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Abstract

In this paper we investigate the size of the fraction of tautologies of the
given length n against the number of all formulas of length n for impli-
cational logic. We are specially interested in asymptotic behavior of this
fraction. We demonstrate the relation between a number of premises of
implicational formula and asymptotic probability of finding formula with
this number of premises. Furthermore we investigate the distribution of
this asymptotic probabilities. Distribution for all formulas is contrasted
with the same distribution for tautologies only. We prove those distri-
butions to be so different that enable us to estimate likelihood of truth
for a given long formula. Despite of the fact that all discussed problems
and methods in this paper are solved by mathematical means, the paper
may have some philosophical impact on the understanding how much the
phenomenon of truth is sporadic or frequent in random logical sentences.

Keywords: asymptotic probability in logic,

1 Introduction

Probabilistic methods appear to be very powerful in combinatorics and com-
puter science. A point of view of those methods is that we investigate the
typical object chosen from the set. In this paper we investigate the lower bound
of the proportion between the number of formulas of the size n that are tau-
tologies against the number of all formulas of size n for propositional formulas.
Our interest lays in finding limit of that fraction when n → ∞. If the limit
exists it represents the real number between 0 and 1 which we may call the
density of truth for the logic investigated. After isolating the the special class
of formulas called simple tautologies we prove that their fractions among all
formulas converges. We conjecture that indeed the fraction of tautologies, for
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large k, is very close to the lower bound determined by simple tautologies. In
general we are interested in finding the density of some special subclasses of
formulas. This paper is a part of the research in which the likelihood of truth
for the given propositional logic with a restricted number of variables is esti-
mated. Consult for example paper of Moczurad, Tyszkiewicz and Zaionc [4]
for purely implicational logic of one variable (and at the same time a type sys-
tem) and Zaionc [8] for the classical logic of implication and negation. In the
paper of Kostrzycka and Zaionc [3] the exact proportion between intuitionistic
and classical logics of the same language have been found. Compare also two
papers of Dershowitz and Harris1 and Harris [2] where asymptotic probability
of satisfiability of propositional formulas is considered. All papers cited above
describes asymptotic results in the logical systems with a restricted number of
variables.

In this paper we investigate the language Fk consisting of implicational formulas
over k propositional variables.

Definition 1 The language Fk over k propositional variables {a1, . . . , ak} is
defined inductively as:

ai ∈ Fk ∀i ≤ k
φ→ ψ ∈ Fk if φ ∈ Fk and ψ ∈ Fk

First we have to establish the way the size of formulas are measured.

Definition 2 By ‖φ‖ we mean the size of formula φ which we define as the total
number of occurrences of propositional variables in the formula. Parentheses
which are sometimes necessary and the implication sign itself are not included
in the size of formula. Formally,

‖ai‖ = 1 and ‖φ→ ψ‖ = ‖φ‖+ ‖ψ‖ .

Definition 3 We associate the density µ(A) with a subset A ⊆ Fk of formulas
as:

µ(A) = lim
n→∞

#{t ∈ A : ‖t‖ = n}
#{t ∈ Fk : ‖t‖ = n}

(1)

if the limit exists.

The number µ(A) if it exists is an asymptotic probability of finding a formula
from the class A among all formulas from Fk or it can be interpreted as the
asymptotic density of the set A in the set Fk. It can be seen immediately that
the density µ is finitely additive so ifA and B are disjoint classes of formulas such
that µ(A) and µ(B) exist then µ(A∪B) also exists and µ(A∪B) = µ(A)+µ(B).

1N. Dershowitz, M. Harris, Enumerating the propositional formulas
Equivalent to a Boolean Function, private communication, see web page
http://www.math.tau.ac.il/ nachumd/
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It is straightforward to observe that for any finite set A the density µ(A) exists
and is 0. Dually for co-finite sets A the density µ(A) = 1. The density µ is not
countably additive so in general the formula

µ

( ∞⋃
i=0

Ai

)
=

∞∑
i=0

µ (Ai) (2)

is not true for all pairwise disjoint classes of sets {Ai}i∈N. A good counterex-
ample for the equation 2 is to take as Ai the i-th formula from our language
under any natural order of formulas. On the left hand side of equation 2 we get
µ (Fk) which is 1 but on right hand side µ (Ai) = 0 for all i ∈ N and so the sum
is 0 .
In this paper we are specially interested in the distribution of densities with
respect to some numerical syntactic property of formulas.

Definition 4 By a random variable X we understand the function X : Fk 7→ N
which assigns a number n ∈ N to the implicational formula in such a way that
for any n the density µ ({φ ∈ Fk : X(φ) = n}) exists and moreover

∞∑
n=0

µ ({φ ∈ Fk : X(φ) = n}) = 1.

Definition 5 By the distribution of a random variable X we mean the function
X : N 7→ R defined by:

X(n) = µ ({φ ∈ Fk : X(φ) = n})

Definition 6 The expected value E(X) =
∑∞

p=0 p · X(p) of distribution X,

variance V ar(X) = E(X
2
)− (E(X))2 =

∑∞
p=0 p

2X(p)− (E(X))2 and standard

deviation σ(X) =
√
V ar(X) are defined in conventional way.

In the paper of Moczurad, Tyszkiewicz and Zaionc [4] we showed what is the re-
lation between the number of premises of implicational formula and asymptotic
probability of finding a formula with this number of premises. In this paper we
are going to investigate the distribution of densities with respect to the number
of premises but only for simple tautologies, which form a large subset of all
tautologies. We prove that this distribution is so different from the previous
one that it can be used to distinguish a tautology only by counting the number
of its premises.

2 Elementary Counting of Implicational Formu-
las

In this section we present some properties of numbers characterizing the amount
of formulas in different classes defined in our language. We may observe that
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many results and methods could be rephrased purely in terms of binary trees
with given properties. Obviously an implicational formula from Fk of size n can
be seen as a binary tree with n leaves and k labels per leave.

Definition 7 By F k
n we mean the total number of formulas from Fk of size n

so:

F k
n = #{φ ∈ Fk : ‖φ‖ = n}. (3)

Lemma 8 F k
n is given by the following recursion:

F k
0 = 0, F k

1 = k, (4)

F k
n =

n−1∑
i=1

F k
i F

k
n−i. (5)

Proof. We may use combinatorial observation. Formula from Fk of size n can
be interpreted as full binary tree of n leaves with k label per leaf. Therefore
for n = 0 and n = 1 it is obvious. Any formula of size n > 1 is the implication
(tree) between some pair of formulas (trees) of sizes i and n − i, respectively.
Therefore the total number of such pairs is

∑n−1
i=1 F

k
i F

k
n−i. �

Lemma 9 The number F k
n = knCn where Cn is (n− 1)th Catalan number.

Proof. Indeed, numbers Cn are given by similar recursion schema:

C0 = 0 C1 = 1 (6)

Cn =
n−1∑
i=1

CiCn−i. (7)

Therefore by simple induction we can immediately see that F k
n = knCn. Obvi-

ously for formulas build with just one propositional variable we have F 1
n = Cn.

�
For more elaborate treatment of Catalan numbers see Wilf [7, pp. 43–44]. We
mention only the following well-known nonrecursive formula for Cn.

Cn =
1
n

( 2n− 2
n− 1

)
, (8)

and repeat some simple properties which are its consequences. For every n ≥ 1
and for every k ≥ 1

Cn

Cn+1
=

1
4

+
3

8n− 4
, (9)

Cn

Cn+k
>

1
4k
, (10)

lim
n→∞

Cn

Cn+k
=

1
4k
. (11)
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Definition 10 By F k
n (p) we mean the number of formulas of size n having p

premises, i.e. formulas which are of the form: τ = τ1 → (. . . → (τp → α)),
where α is a propositional variable.

Lemma 11 F k
n =

∑n−1
p=1 F

k
n (p).

Proof. Since numbers F k
n (p) are the cardinalities of disjoint sets of formulas for

different p’s and since there are no formulas of size n having more then n − 1
premises, for n ≥ 2 we have: F k

n = F k
n (1) + . . .+ F k

n (n− 1). �

Definition 12 By Cn(p) we mean F 1
n(p).

As in Lemma 9 we have F k
n (p) = knCn(p) .

Lemma 13 Number F k
n (p) is given by the following recursion on p:

F k
n (0) =

{
k if n = 1
0 if n 6= 1 (12)

F k
n (1) =

{
0 if n = 0
kF k

n−1 if n > 0 (13)

F k
n (p) =

n−p∑
i=1

F k
i F

k
n−i(p− 1). (14)

Proof. The formula for F k
n (0) is obvious. Except for n = 0 the number F k

n (1) =
kF k

n−1, since F k
n (1) is the number of formulas of the form τ → α. There are

F k
n−1 formulas τ and k propositional variables α. For p > 1 consider formula

τ = τ1 → (τ2 → (. . . (τp → α) . . .)︸ ︷︷ ︸
µ

),

where τ1 is of size i. The number of possible formulas of τ is the number of
formulas of τ1 (i.e. F k

i ) and µ (i.e. Fn−i(p − 1)), summed over all possible
divisions at position i. The summation stops at i = n− p, since beginning with
i = n− p+ 1 the terms become zero. �

We are going to isolate the class of simple tautologies which are an important
and large fragment of the set of tautologies. As we will see afterwards the class
of simple tautologies is so big as to be a good approximation of the whole set
of tautologies. Therefore investigations about behavior of the whole set can be
nicely approximated by this fragment.

Definition 14 A simple tautology is a formula τ ∈ Fk of the form τ =
τ1, . . . , τp → α such that there is at least one component τi identical to α.
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Evidently, a simple tautology is a tautology. Let Gk
n be the number of sim-

ple tautologies of size n built with k propositional variables and Gk
n(p) be the

number of simple tautologies of size n built with k variables with p premises.
Our goal is to find how big asymptotically is the fragment of simple tautologies
within the set of all formulas.

Lemma 15 The number Gk
n of simple tautologies is given the recursion

Gk
1 = 0, (15)

Gk
2 = k, (16)

Gk
n = F k

n−1 −Gk
n−1 +

n−1∑
i=2

F k
n−iG

k
i . (17)

Proof. For base cases when n = 1 and n = 2 the proof is trivial. The recursive
case is based on two observations: First, τ1 → τ2 is simple if τ2 is simple.
So for every formula τ1 of size n − i and every simple tautology τ2 of size i
we have one simple tautology τ1 → τ2 of size n. The sum starts from i = 2
because there are no simple tautologies of size 1. This part is responsible for
the component

∑n−1
i=2 F

k
n−iG

k
i . The only other simple tautologies are those for

which τ1 is a propositional variable identical to the propositional variable the
formula τ2 points to. Therefore for every formula τ2 of size n− 1 which is not a
simple tautology (there are exactly F k

n−1−Gk
n−1 such formulas) we have exactly

one simple tautology α→ τ2 where α is a propositional variable the formula τ2
proves. Notice that if τ2 is already a simple tautology this case is covered by
the previous component. �

Lemma 16 The number Gk
n(p) of simple tautologies with p premises is given

by the following recursion on p,

Gk
n(0) =

{
k if n = 1
0 if n 6= 1 (18)

Gk
n(p+ 1) =

{
0 if n ≤ p

F k
n−1(p)−Gk

n−1(p) +
∑n−1

i=2 F
k
n−iG

k
i (p) if n > p

(19)

Proof. The similar argument as for Lemma 15. Proof must be accompanied
with counting the number of premises of the considered simple tautology. �

3 Generating functions

In this paper we investigate the proportion between the number of formulas of
the size n that are tautologies against the number of all formulas of size n for
propositional formulas of the language Fk. Our interest lays in finding limit of
that fraction when n→∞. For this purpose combinatorics has developed an ex-
tremely powerful tool, in the form of generating series and generating functions.

6



A nice exposition of the method can be found in Wilf [7], Comtet [1] as well
as in Flajolet, Sedgewick2. As the reader may now expect, while working with
propositional logic we will be often concerned with complex analysis, analytic
functions and their singularities.

LetA = (A0, A1, A2, . . .) be a sequence of real numbers. The ordinary generating
series for A is the formal power series

∑∞
n=0Anz

n. And, of course, formal power
series are in one-to-one correspondence to sequences. However, considering z as
a complex variable, this series, as known from the theory of analytic functions,
converges uniformly to a function fA(z) in some open disc {z ∈ C : |z| < R}
of maximal diameter, and R ≥ 0 is called its radius of convergence. So with
the sequence A we can associate a complex function fA(z), called the ordinary
generating function for A, defined in a neighborhood of 0. This correspondence
is one-to-one again (unless R = 0), since, as it is well known from the theory
of analytic functions, the expansion of a complex function f(z), analytic in a
neighborhood of z0, into a power series

∑∞
n=0An(z − z0)n is unique.

Definition 17 Let F be a series in powers of z. Then by the symbol [zn]{F}
we will mean the coefficient of zn in the exponential series expansion of F.

Many questions concerning the asymptotic behavior of A can be efficiently re-
solved by analyzing the behavior of fA at the complex circle |z| = R. This is
the approach we take to determine the asymptotic fraction of tautologies and
many other classes of formulas among all formulas of a given size.

Definition 18 The generalized Newton symbol
(
a
n

)
for complex number a

stands for a(a− 1) . . . (a− (n− 1))/n!.

The key tool for finding asymptotics will be the following result, due to Szegö
[6] [Thm. 8.4], see as well Wilf [7] [Thm. 5.3.2 page 181]. Function v in the
assumption of Szegö lemma is the one from which we want to extract coeffi-
cients of expansion. Remember that ξ(q) defined in formula 22 is the bound of
summation in 21.

Theorem 19 [S
¯
zegö lemma] Let v(z) be analytic in |z| < 1 with a finite number

of singularities eiϕ(k)
, k = 1, . . . , s, at the circle |z| = 1. Suppose that in the

neighborhood of each eiϕ(k)
, v(z) has the expansion of the form

v(z) =
∑
p≥0

v(k)
p (1− ze−iϕ(k)

)a(k)+pb(k)
, (20)

where a(k) ∈ C and b(k) > 0 is real, and the branch chosen above for the expan-
sion equals v(0) for z = 0. Then

2P. Flajolet,R. Sedgewick, Analytic combinatorics, symbolic combinatorics, unpublished,
see web page http://algo.inria.fr/flajolet/Publications/books.html
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[zn]{v(z)} =
s∑

k=1

ξ(q)∑
p=0

v(k)
p

(
a(k) + pb(k)

n

)
(−eiϕ(k)

)n +O(n−q), (21)

with
ξ(q) = max

k=1...s
d(1/b(k))(q −<(a(k))− 1)e. (22)

In all our applications we will indeed have only one singulary. The following is
much simpler version of the Szegö Lemma derived from Theorem 19. In this
special case we assume to have only one singularity located at z = 1. Therefore
s = 1, ϕ(1) = 0. Additionally we assume b(1) = 1/2, a(1) = 0. Also we will
be satisfied with error bound O(n−2). So q = 2. It follows that our ξ(q) = 2.
Consult also the paper of Moczurad, Tyszkiewicz and Zaionc [4] [Cor. 2.4. page
578]. Under all those assumptions Szegö lemma reduces to the following:

Corollary 20 (simplified Szegö Lemma) Let v(z) be analytic in |z| < 1 with
z = 1 the only singularity at the circle |z| = 1. If v(z) in the vicinity of z = 1
has the expansion of the form

v(z) =
∑
p≥0

vp(1− z)p/2, (23)

where p > 0, and the branch chosen above for the expansion equals v(0) for
z = 0, then

[zn]{v(z)} =
(
v0

( 0
n

)
+ v1

(
1/2
n

)
+ v2

( 1
n

))
(−1)n +O(n−2). (24)

Moreover, remember that
( 0
n

)
=
( 1
n

)
= 0 for n > 1 then it reduces even more

to:

[zn]{v(z)} = v1

(
1/2
n

)
(−1)n +O(n−2). (25)

Consult also the simplified Szegö Lemma in Zaionc, [8] and in Kostrzycka,
Zaionc, [3]. For technical reasons we will need to know the rate of grow of

the function
(

1/2
n

)
(−1)n which appears at the formula 25.

Lemma 21 For n ∈ N we have
(

1/2
n

)
(−1)n+1 = O(n−3/2)

Proof. It can be obtained from 8 by the Stirling approximation formula (see
Robbins [5] for details).

In this part of the section we are going to present the method of finding asymp-
totic densities for the classes of formulas for which the generating functions are
already calculated. The main tool used for this purpose is theorem based on
simplified Szegö lemma. The following lemma is a main tool for finding limits
of the fraction an

bn
, when generating functions for sequences an and bn satisfies

conditions of simplified Szegö Lemma 20.
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Theorem 22 Suppose two functions v(z) and w(z) satisfies assumptions of
simplified Szegö theorem (corollary 20) i.e. both v and w are analytic in |z| < 1
with z = 1 being the only singularity at the circle |z| = 1. Both v(z) and w(z)
in the vicinity of z = 1 have expansions of the form

v(z) =
∑
p≥0

vp(1− z)p/2, (26)

w(z) =
∑
p≥0

wp(1− z)p/2, (27)

then the limit of [zn]{v(z)}
[zn]{w(z)} exists and is given by formula:

lim
n→∞

[zn]{v(z)}
[zn]{w(z)}

=
v1
w1
. (28)

Proof. Applying the main formula 25 from simplified version of Szegö Lemma
in corollary 20 and equation from Lemma 21 we get:

lim
n→∞

[zn]{v(z)}
[zn]{w(z)}

= lim
n→∞

v1

(
1/2
n

)
(−1)n +O(n−2)

w1

(
1/2
n

)
(−1)n +O(n−2)

= lim
n→∞

−v1O(n−3/2) +O(n−2)
−w1O(n−3/2) +O(n−2)

=
v1
w1

�
From the previous theorem we can derive the technical lemma which will be
very useful for finding limits of the proportion between two sequences of known
generating functions.

Lemma 23 Suppose two functions v(z) and w(z) satisfies assumptions of sim-
plified Szegö theorem (corollary 20) i.e. both v and w are analytic in |z| < 1
with z = 1 being the only singularity at the circle |z| = 1. Both v(z) and w(z)
in the vicinity of z = 1 have expansions of the form

v(z) =
∑
p≥0

vp(1− z)p/2, (29)

w(z) =
∑
p≥0

wp(1− z)p/2, (30)

Suppose we have functions ṽ and w̃ satisfying ṽ(
√

1− z) = v(z) and w̃(
√

1− z) =
w(z) then the limit of [zn]{v(z)}

[zn]{w(z)} exists and is given by formula:

lim
n→∞

[zn]{v(z)}
[zn]{w(z)}

=
(ṽ)′(0)
(w̃)′(0)

(31)
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Proof. Simple consequence of corollary 20. New functions ṽ and w̃ have
expansions

ṽ(z) =
∑
p≥0

vpz
p, (32)

w̃(z) =
∑
p≥0

wpz
p, (33)

Therefore v1 = (ṽ)′(0) and w1 = (w̃)′(0). By Theorem 22 the result presented
in formula 31 is obvious. �

4 Calculating generating functions

We start with calculating generating functions for all recursively defined se-
quences from section 2.

Lemma 24 The generating function fF for the numbers F k
n is

fF (z) =
1
2
− 1

2

√
1− 4 k z, (34)

Proof. Obvious. Can be found in paper of Moczurad, Tyszkiewicz and Zaionc
[4, p. 588] or see the whole exposition in Wilf [7]. As a special case of 34
when k = 1 we have generating function fC for numbers Cn given by fC(z) =
1/2− (

√
1− 4z)/2. �

Lemma 25 For fixed p ≥ 0 the generating functions fC(p) and fF (p) respectively
for Cn(p) and F k

n (p) are following:

fC(p)(z) = z · (fC(z))p = z ·
(

1−
√

1− 4z
2

)p

, (35)

fF (p)(z) = k · z · (fF (z))p = k · z ·
(

1−
√

1− 4kz
2

)p

. (36)

Proof. Let fC(p)(z) be a generating function for Cn(p). Lemma 13 gives Cn(p) =∑n−p
i=1 CiCn−i(p − 1) which becomes after a closer examination, the equality

fC(p−1)(z) · fC(z) = fC(p)(z). Since Cn(1) = Cn−1 we get fC(1)(z) = z(fC(z))
and consequently fC(p)(z) = z(fC(z))p. Thanks to equation F k

n (p) = knCn(p)
we get fF (p)(z) = fC(p)(kz) which ends the proof of equality 36. Notice that
formulas 35 and 36 are also correct for p = 0 �

Lemma 26 The generating function fG for numbers Gk
n is:

fG(z) =
zfF (z)

1− fF (z) + z
=

(1 + z)(1−
√

1− 4 k z)− 2kz
2(1 + k + z)

. (37)
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Proof. The recurrence given by equation 17

Gk
n = F k

n−1 −Gk
n−1 +

n−1∑
i=2

F k
n−iG

k
i

from Lemma 15 becomes fG = fG · fF + z · fF − z · fG. Solving it for fG gives
Equation 37. �

Lemma 27 For fixed p the generating function fG(p) for Gk
n(p) can be defined

by the following recursion on p:

fG(0)(z) = 0,

fG(p+1)(z) = fF (z) · fG(p)(z) + kz2 (fF (z))p − zfG(p)(z). (38)

Proof. Formula for fG(p+1) is a simple encoding of the recurrence 19. Multipli-
cation fF (z) ·fG(p)(z) is responsible for the fragment

∑n−1
i=2 F

k
n−iG

k
i (p). Accord-

ing to formula 36 (see Lemma 25) for functions F k
n (p) we have that kz (fF (z))p

stands for F k
n (p). Since the number in recurrence depends on n− 1 not on n it

have to be additionally multiply by z. The last fragment zfG(p)(z) is responsible
for the recursion Gk

n−1(p) in 19. �

As the reader may now expect we are going to prove that for every p function
fG(p)(z) is of the form C(z)fF (z)+D(z) for certain polynomials C(z) and D(z)
of variable z. As we will see also for every p function (fF (z))p must have a form
of A(z)fF (z) +B(z) for certain polynomials A(z) and B(z) of variable z.

Definition 28 Let us define four sequences of polynomials by the following mu-
tual recursion:

A0(z) = 0, B0(z) = 1, C0(z) = 0, D0(z) = 0, (39)

Ap+1(z) = Ap(z) +Bp(z), (40)
Bp+1(z) = −kzAp(z), (41)
Cp+1(z) = Cp(z) +Dp(z) + kz2Ap(z)− zCp(z), (42)
Dp+1(z) = kz2Bp(z)− zDp(z)− kzCp(z). (43)

Theorem 29 For every p ≥ 0 the following hold:

(fF (z))p = Ap(z)fF (z) +Bp(z), (44)
fG(p)(z) = Cp(z)fF (z) +Dp(z). (45)

for polynomials Ap(z), Bp(z), Cp(z) and Dp(z) defined recursively in 28.
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Proof. Induction on p. For p = 0 it is obvious. Since (fF (z))0 = 1 and
fG(0)(z) = 0 polynomials are A(z) = 0, B(z) = 1, C(z) = 0 and D(z) = 0.
The induction step is based on the formula (fF (z))2 = fF (z) − k · z derived
from Lemma 24. Suppose (fF (z))p = Ap(z)fF (z) + Bp(z). We can calculate
the shape of polynomials Ap+1(z) and Bp+1(z) in the following way:

(fF (z))p+1 = (fF (z))p
fF (z)

= (Ap(z)fF (z) +Bp(z))fF (z)
= Ap(z)(fF (z))2 +Bp(z)fF (z)
= Ap(z)(fF (z)− kz) +Bp(z)fF (z)
= (Ap(z) +Bp(z))fF (z)− kzAp(z)

Therefore Ap+1(z) = Ap(z) + Bp(z) and Bp+1(z) = −kzAp(z). Similarly we
calculate fG(p+1)(z) using formula 38 from Lemma 27. Suppose fG(p)(z) =
Cp(z)fF (z) + Dp(z). Calculation is based again on the formula (fF (z))2 =
fF (z)− k · z derived from Lemma 24 and on previous formula 44 for (fF (z))p.

fG(p+1)(z) = [fF (z)− z] · fG(p)(z) + kz2 (fF (z))p

= [fF (z)− z] · [Cp(z)fF (z) +Dp(z)] + kz2[Ap(z)fF (z) +Bp(z)]
= Cp(z)[fF (z)]2 + [Dp(z) + kz2Ap(z)− zCp(z)]fF (z)

+kz2Bp(z)− zDp(z)
= Cp(z)[fF (z)− kz] + [Dp(z) + kz2Ap(z)− zCp(z)]fF (z)

+kz2Bp(z)− zDp(z)
= [Cp(z) +Dp(z) + kz2Ap(z)− zCp(z)]fF (z)

+kz2Bp(z)− zDp(z)− kzCp(z)

Therefore new polynomial coefficients for Cp+1(z) and Dp+1(z) are expressible
by the old ones in the way described above. �

The first few generation functions fG(p)(z) are the following:

fG(1)(z) = kz2

fG(2)(z) = 2kz2fF (z)− kz3

fG(3)(z) = (3kz2 − 3kz3)fF (z)− 3k2z3 + kz4

fG(4)(z) = (4kz2 − 6kz3 − 4k2z3 + 4kz4)fF (z)− 4k2z3 + 6k2z4 − kz5

Expanding fF (z) in above formulas gives the the combinatorial insight of the
number of simple tautologies with the certain number of premises. For example
in the expansion of fG(2)(z) we can see the pattern e.g.

fG(2)(z) = (2k2 − k)z3 + 2k3z4 + 4k4z5 + 10k5z6 + 28k6z7 + 84k7z8 + . . .

12



The natural combinatorial binary tree interpretation is that the number of sim-
ple tautologies for n ≥ 4 with two premises is twice as many as the total number
of formulas shorter by 2 multiplied by the number k of labels.

5 Calculation of limits

In this section we are going to find asymptotic densities for the classes of for-
mulas for which the generating functions are already calculated. The main tool
used for this purpose is Lemma 23. The main goal of this section is to find the
formula for the asymptotic density of the classes of simple tautologies with p
premises which later on allows us to speak about distribution of probabilities.

First we recall two results from Moczurad, Tyszkiewicz and Zaionc [4]. In the
first one we consider the probability that the given formula is simple tautology.
The meaning of this theorem is that the limit of the fraction Gk

n/F
k
n while n

tends to infinity exists and the size of true formulas is at least as big as O(1/k).
In fact in paper [4] we proved that the size of true formulas is also at most as
big as O(1/k) (see [4] corollary 6.10 page 587). The second theorem finds the
probability that the given formula has p premises. Both are good examples of
the usefulness of Theorem 22 and Lemma 23.

Theorem 30

lim
n→∞

Gk
n

F k
n

=
4k + 1

(2k + 1)2
(46)

Proof. We show now much more efficient proof based on Theorem 22 and Lemma
23 compered with those from paper [4]. Indeed, first we recall equation 37 from
Lemma 26 for fG and formula for fF from Lemma 24.

fG(z) =
(1 + z)(1−

√
1− 4 k z)− 2kz

2(1 + k + z)

fF (z) =
1
2
− 1

2

√
1− 4 k z

In order to satisfy assumptions of Theorem 22 we normalize functions in such a
way to have the only singularity located in |z| ≤ 1 at the position in z = 1. So,
we define functions fG(z) = fG(z/(4k)) and fF (z) = fF (z/(4k)). Therefore we
have:

fG(z) = −1
2
−z − 4k + 2kz + (4k + z)

√
1− z

4k(1 + k) + z

fF (z) =
1
2
− 1

2
√

1− z (47)

13



This representation reveals that the only singularity of fG(z) and fF (z) located
in |z| ≤ 1 is indeed z = 1. We have to remember that change of a caliber of the
radius of convergence for functions fG and fF effects accordingly sequences rep-
resented by the new functions. Therefore we have Gk

n = (4k)n
(
[zn]{fG(z)}

)
and

F k
n = (4k)n

(
[zn]{fF (z)}

)
. Now we are ready to use Lemma 23. Let us define

functions f̃F and f̃G so as to satisfy the following equations: f̃F (
√

1− z) = fF (z)
and f̃G(

√
1− z) = fG(z). Functions f̃F and f̃G are defined in the following way:

f̃G(z) = −1
2

(z − 1)2

z − 2k − 1
(48)

f̃F (z) =
1
2
− 1

2
z (49)

The derivatives (f̃F )′ and (f̃F )′ are the following:

(f̃G)′(z) = −1
2

(z − 4k − 1)(z − 1)
(z − 2k − 1)2

(f̃F )′(z) = −1
2

Finally derivatives (f̃F )′ and (f̃F )′ at z = 0 are:

(f̃G)′(0) = −1
2

4k + 1
(2k + 1)2

(f̃F )′(0) = −1
2

Now applying Lemma 23 we get

lim
n→∞

Gk
n

F k
n

= lim
n→∞

(4k)n
(
[zn]{fG(z)}

)
(4k)n

(
[zn]{fF (z)}

)
=

(f̃G)′(0)

(f̃F )′(0)
=

4k + 1
(2k + 1)2

which ends the proof. �

The proof of Theorem 30 reveals the “technology” of determining the conver-
gence of fractions in which both numerator and denominator are given recur-
sively and both generating functions are satisfying simplified Szegö Lemma 23.
The proof of the next theorem will use exactly the same technique.

Lemma 31 The asymptotic probability of the fact that a random formula ad-
mits exactly p premises is:

14



lim
n→∞

F k
n (p)
F k

n

=
p

2p+1
. (50)

Proof. First we recall equation 36 from Lemma 25 describing function fF (p).
All steps for denominator fF are already done in previous Theorem 30.

fF (p)(z) = kz(fF (z))p = kz

(
1−

√
1− 4kz
2

)p

. (51)

Function fF (p)(z) = fF (p)(z/(4k)) defined to satisfy Theorem 22 is as follows:

fF (p)(z) =
z

4
(fF (z))p =

z

4

(
1−

√
1− z

2

)p

. (52)

It is clear that fF (p)(z) admits the only singularity at z = 1. As in previ-
ous theorem let us define functions f̃F (p) as to satisfy the following equations:
f̃F (p)(

√
1− z) = fF (p)(z). Therefore

f̃F (p)(z) =
1− z2

4

(
1− z

2

)p

(53)

Derivative of the function f̃F (p)(z) is following:

(f̃F (p))′(z) = −z
2

2

(
1− z

2

)2

− p
(1− z2)

8

(
1− z

2

)p−1

(54)

Therefore (f̃F (p))′(0) = − 1
2

p
2p+1 which concludes the proof. �

The main goal of this section is to find the formula for the asymptotic density of
the classes of simple tautologies with p premises which allows us to speak about
distribution of probabilities. This part is based on the Theorem 29 which shows
very specific form of each function from two families of fG(p)(z) and (fF (z))p

for all p ≥ 0. This will be a starting point for the construction of the recursive
definition of the limit of each function in terms of the previous limits.

Lemma 32 Let h(z) = A(z)fF (z) be a generating function for some sequence
Hn where A(z) is some polynomial of variable z. The sequence of fractions
Hn/F

k
n admits limit.

Proof. We can easily observe the existence of limit for function A(z) = zs for
s ≥ 0. Function zsfF (z) is a generating function for the sequence with the limit
property. It is due to the formula 11. We get
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lim
n→∞

Hn

F k
n

= lim
n→∞

F k
n−s

F k
n

= lim
n→∞

kn−sCn−s

knCn
= lim

n→∞

1
ks

Cn−s

Cn
=

1
(4k)s

.

Because of linear property of limits we have got the limit for all functions on
the form h(z) = A(z)fF (z). If a polynomial A(z) =

∑k
i=0Aiz

i then the limit is∑k
i=0

Ai

(4k)i . �

Lemma 33 Let g(z) = A(z)fF (z) +B(z) where A(z) and B(z) are some poly-
nomials of variable z. Let h(z) = A(z)fF (z) be generating functions for some
sequences Gn and Hn respectively . Two sequences of fractions Hn/F

k
n and

Gn/F
k
n admit limits and limits are identical.

Proof. Trivially follows from Lemma 32. A function in the form g(z) =
A(z)fF (z) + B(z) admits the identical limit

∑k
i=0

Ai

(4k)i since the coefficients
of B(z) disturb only first few finite numbers of coefficients from an expansion
of the A(z)fF (z) but this does’t make any effect on the limit. �

Now we are ready to define recursive dependencies between limits of sequences
associated with the classes of four different polynomials Ap(z), Bp(z), Cp(z) and
Dp(z) defined in definition 28.

Definition 34 Let A be a polynomial. Let h(z) = A(z)fF (z) be a generat-
ing function for some sequence Hn. According to Lemma 32 the sequence of
fractions Hn/F

k
n admits limit. By −→A we mean the limit of this sequence, so

−→
A = lim

n→∞

Hn

F k
n

= lim
n→∞

[zn]{A(z)fF (z)}
F k

n

.

Lemma 35 For any polynomials A and B and a number α the limits have to
satisfy the following obvious conditions:

−−−−→
A+B = −→

A +−→
B, (55)

−→
αA = α

−→
A, (56)

−−−→
zA(z) =

1
4k
−→
A. (57)

Proof. Equations 55 and 56 are obvious. For 57 observe the calculation of limit
in Lemma 32. �

Our goal now is to establish recursive dependencies between sequences of limits−→
Ap,

−→
Bp,

−→
Cp, and −→

Dp. Four sequences of polynomials Ap, Bp, Cp and Dp are de-
fined by mutual recursion in definition 28. The recurrence between limits can
be found straightforwardly by encoding the definitions of the polynomials itself.
We are specially interested in the family of limits −→Cp, since for the given p it
is in fact an asymptotic probability of the class of simple tautologies with p
premises. We start with independent solution for limits −→Ap and −→Bp.
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Lemma 36 −→
Ap = p

2p−1

Proof. Sequence of limits −→Ap satisfies the following recursive definition

−→
A0 = 0, −→

A1 = 1, (58)
−−−→
Ap+1 = −→

Ap −
1
4
−−−→
Ap−1. (59)

since from Lemma 28 we can find easily the independent recurrence on polyno-
mials Ap namely Ap+1(z) = Ap(z) − kzAp−1(z). Formula 59 it is due to the
simple computation on limits using rules 55, 56 and 57. Now it is straightfor-
ward to solve the three term “Fibonacci like” recurrence (see for example Wilf
[7] page 8). Generating function A(z) for the sequence of limits −→Ap have to sat-
isfy an equation A(z)−z

z = A(z)− 1
4zA(z). Solving it gives A(z) = 4z

(z−2)2 . Since

the function z
(az+b)2 has the expansion

∑∞
i=0−

i
ab

(
−a

b

)i
zi we get the solution.

�

Lemma 37 −→
Bp = −p−1

2p .

Proof. Immediate from Bp+1(z) = −kzAp(z). �

Theorem 38 −→
Cp = p

2p+1 − p (2k−1)p−1

4pkp−1

Proof. Sequences of limits −→Cp and −→
Dp have to satisfy the following mutual

recursive definition.

−−−→
Cp+1 =

(
1− 1

4k

)
−→
Cp +−→

Dp +
p

k · 2p+3
, (60)

−−−→
Dp+1 = −

−→
Cp

4
−
−→
Dp

4k
− (p− 1)
k · 2p+4

. (61)

This is immediate from 42 and 43 of definition 28 and previous Lemmas 36 and
37. Now we solve recursive equations 60 and 61 in the standard way by creating
appropriate generation functions for two sequences of limits−→Cp and−→Dp. We start
with finding the equations between the generating functions which describe the
recurrence 60 and 61. Let C andD be generating functions for sequences of limits−→
Cp and −→Dp respectively. Functions C and D satisfy the following equations:

C(z)
z

=
(

1− 1
4k

)
C(z) +D(z) +

z

4k(2− z)2
, (62)

D(z)
z

= −C(z)
4

− D(z)
4k

− (z − 1)
4k · (1− z)2

. (63)

To find equation for C multiply both sides of recurrence relation 60

17



−−−→
Cp+1 =

(
1− 1

4k

)
−→
Cp +−→

Dp +
p

k · 2p+3
(64)

by zp and sum over the values on p for which the recurrence is valid namely for
p ≥ 0. On left side we get

∑∞
p=0

−−−→
Cp+1z

p. It is the same with (
∑∞

p=0

−→
Cpz

p−−→C0)/z

which is C(z)
z (since−→C0 = 0). On the right side it is immediate

∑∞
p=0

(
1− 1

4k

)−→
Cpz

p

=
(
1− 1

4k

)
C(z) and

∑∞
p=0

−→
Dpz

p = D(z). The last fragment
∑∞

p=0
p

k·2p+3 z
p =

1
8k

∑∞
p=0 p

(
1
2

)p which after summation becomes z
4k(2−z)2 . The similar summa-

tion we do for the recurrence relation.

−−−→
Dp+1 = −

−→
Cp

4
−
−→
Dp

4k
− (p− 1)
k · 2p+4

(65)

to obtain D(z)
z = −C(z)

4 − D(z)
4k − (z−1)

4k·(1−z)2 . The only solution for C(z) presented
in the form of partial fractions is as follows:

C(z) =
2

(z − 2)2
+

1
(z − 2)

− 16k3

(2k − 1)((2k − 1)z − 4k)

− 4k2

(2k − 1)((2k − 1)z − 4k)2
(66)

We use the standard expansion formulas separately for every fraction in 66. To
conclude the proof we extract p − th element of expansion from every formula
and we get −→Cp = p

2p+1 − p (2k−1)p−1

4pkp−1 �

We have found the simple formula p
2p+1 − p (2k−1)p−1

4pkp−1 for −→Cp. The natural and
intended interpretation of −→Cp is the probability that the random implicational
formula is a simple tautology with p premises.

Theorem 39 The asymptotic probability of the fact that a random formula is
a simple tautology with exactly p premises is:

lim
n→∞

Gk
n(p)
F k

n

=
p

2p+1
− p

(2k − 1)p−1

4pkp−1
. (67)

Proof. Base consequently on Theorem 29 Lemma 33 and finally Theorem 38.

lim
n→∞

Gk
n(p)
F k

n

= lim
n→∞

[zn]
(
fG(p)(z)

)
[zn] (fF (z))

= lim
n→∞

[zn] (Cp(z)fF (z) +Dp(z))
[zn] (fF (z))

= lim
n→∞

[zn] (Cp(z)fF (z))
[zn] (fF (z))

= −→
Cp

=
p

2p+1
− p

(2k − 1)p−1

4pkp−1
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Theorem 40 The probability that simple tautology has exactly p premises is
described by:

lim
n→∞

Gk
n(p)
Gk

n

=
(

(2k + 1)2

4k + 1

)(
p

2p+1
− p

(2k − 1)p−1

4pkp−1

)
. (68)

Proof. Combine two limit equations from Theorems 30 and 39. �

6 Distribution of probabilities

In this section we will discuss and compare the distribution of probabilities
proved in previous sections. There are two main questions we wish to discuss:

What is the probability that a randomly chosen implicational formula admits p
premises ?

What is the probability that a randomly chosen implicational simple tautology
admits p premises ?

To answer the first question we group together all formulas with p premises and
according to the definition 1 we try to find the asymptotic probability of this
class. But this is exactly what we have found in Theorem 31. So let us start
with analyzing the first distribution:

Definition 41 Let us define the random variable X which assigns to a impli-
cational formula the number of its premises.

Lemma 42 Random variable X has the distribution X(p) = limn→∞
F k

n (p)
F k

n
=

p
2p+1 , expected value E(X) = 3, variance V ar(X) = 4. The standard deviation
of X is 2.

Proof. Technical observation. As we know the number of formulas of size n
with the p premises is F k

n (p). Therefore according to Lemma 31 the asymp-
totic probability is p

2p+1 . This forms a distribution since
∑∞

p=0
p

2p+1 = 1. Ex-
pected value E(X) =

∑∞
p=1 p X(p) =

∑∞
p=1 p

p
2p+1 = 3, and variance V ar(X) =

E((X − E(X))2) = E(X2)− (E(X))2 =
∑∞

p=1 p
2 p

2p+1 − 9 = 4, so the standard

deviation of X is
√
V ar(X) = 2. �

As the trivial consequences of the lemma above we can see that surprisingly
typical implicational formula have exactly 3 premises. Consider the set of for-
mulas {

φ :
∣∣X(φ)− E(X)

∣∣ ≤√V ar(X)
}
.
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The asymptotic density of this set of formulas with premises laying between 1
and 5 is asymptotically fairly big and amounts to

∑5
p=1

p2

2p+1 = 57/64 which is
about 89%.

Now we will start to answer the second question. First we have to isolate the
class of all simple tautologies with p premises and compare it against the class
of all simple tautologies. But this is exactly what we have found in Theorem 40.
We will see now the difference between distribution of the number of premises
for all formulas contrasted with the same distribution for simple tautologies
only.

Definition 43 For every k ≥ 1 separately let us define the random variable Yk

which assigns to a implicational simple tautology in the language Fk the number
of its premises.

Theorem 44 Random variable Yk has the following distribution, expected value
and variance:

Yk(p) = lim
n→∞

Gk
n(p)
Gk

n

=
(

(2k + 1)2

4k + 1

)(
p

2p+1
− p

(2k − 1)p−1

4pkp−1

)
E(Yk) =

40k2 + 18k + 3
(2k + 1)(4k + 1)

V ar(Yk) =
384k4 + 288k3 + 160k2 + 48k + 4

(2k + 1)2(4k + 1)2

Proof. As we know, the number of simple tautologies with p premises is Gk
n(p).

The asymptotic probability limn→∞
Gk

n(p)
Gk

n
is computed in Theorem 40. This

constitutes a distribution since
∑∞

p=0 Yk(p) = 1 (for summation use formula∑∞
i=0 iz

i = z
(1−z)2 twice ). Expected value of Yk ( for summation use formula∑∞

i=0 i
2zi = z 1+z

(1−z)3 twice) is E(Yk) =
∑∞

p=0 pYk(p) = 40k2+18k+3
(2k+1)(4k+1) . Com-

paring this with the distribution X(p) reader can easily check that starting
with k = 1 the expected value of the number of premises for simple tautolo-
gies is substantially greater then 3 and is growing asymptotically to 5 since
limk→∞E(Yk) = 5. Variance (use formula

∑∞
i=0 i

3zi = z 1+4z+z2

(1−z)4 ) is V ar(Yk) =

E((Yk − E(Yk))2) = E((Yk)2) − (E(Yk))2 = 384k4+288k3+160k2+48k+4
(2k+1)2(4k+1)2 . Asymp-

totic behavior of V ar(Yk) can be easily found as limk→∞ V ar(Yk) = 6. �

7 Limit distribution

The natural question is how the distribution of true sentences look like for very
large numbers k and does there exist an uniform asymptotic distribution when
k, the number of propositional variables in the logic, tends to infinity. The
answers are following:
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Lemma 45 For fixed p ≥ 0

lim
k→∞

Yk(p) =
p(p− 1)

2p+2
. (69)

Proof. See the formula for Yk(p) from Theorem 44. For p = 0 and p = 1 it is
obvious. For p ≥ 2 it is simple limit exercise:

lim
k→∞

(
(2k + 1)2

4k + 1

)(
p

2p+1
− p

(2k − 1)p−1

4pkp−1

)
= lim

k→∞

(
(2k + 1)2

k(4k + 1)
p

2p+1

)(
k − 2(2k − 1)p−1

2pkp−2

)

= lim
k→∞

(
(2k + 1)2

k(4k + 1)
p

2p+1

)2
(
p− 1

1

)
(2k)p−2 + 2

(
p− 1

2

)
(2k)p−3 − . . .

4(2k)p−2


= lim

k→∞

(
(2k + 1)2

k(4k + 1)
p

2p+1

)(
p− 1

2
+

(p− 1)(p− 2)
4(2k)

− . . .

)
=

p(p− 1)
2p+2

�

Definition 46 Let us define the limit distribution Y∞ by Y∞(p) = p(p−1)
2p+2 .

This is in fact distribution since
∑∞

p=0 Y∞(p) =
∑∞

p=0
p(p−1)
2p+2 = 1. Expected

value of Y∞ is E(Y∞) =
∑∞

p=0 p Y∞(p) =
∑∞

p=0
p2(p−1)

2p+2 = 5. The variance of Y∞
is V ar(Y∞) = E((Y∞ − E(Y∞))2) = E((Y∞)2)− (E(Y∞))2 =

∑∞
p=0 p

2 p(p−1)
2p+2 −

25 = 31− 25 = 6. So it is clear now that

∀p ≥ 0 lim
k→∞

Yk(p) = Y∞(p) (70)

lim
k→∞

E(Yk) = E(Y∞) (71)

lim
k→∞

V ar(Yk) = V ar(Y∞) (72)

The componentwise convergence presented in Lemma 45 and summarized by
the formula 70 can be extended to much stronger uniform convergence. Below
we show the uniformity of convergence of the sequence of distributions Yk to Y∞
when k tends to infinity. Therefore in fact the distribution Y∞ can be treated
as a good model of distribution for simple tautologies for the language Fk when
the number k of atomic propositional variables is large.

Theorem 47 The sequence of distributions Yk uniformly converges to the dis-
tribution Y∞.

21



Proof. It can be shown by very laborious but simple calculations of the Cartesian
distance between distributions Yk and Y∞. The distance between functions
f : N → R and g : N → R is defined by

dis(f, g) =
∞∑

p=0

(f(p)− g(p))2 .

Since we have explicit formulas expressing Yk and Y∞ we are able to find an
expression for the distance written only in terms of k.

dis(Yk, Y∞) =
∞∑

p=0

(Yk(p)− Y∞(p))2

=
∞∑

p=0

((Yk(p))2 − 2
∞∑

p=0

Y∞(p)Yk(p) +
∞∑

p=0

(Y∞(p))2.

Let us calculate separately each sum. Notice that each one is of the form of
some combination of known power series

∑∞
i=0 i

szi for some s.

∞∑
p=0

((Yk(p))2 =
(2k + 1)4

(4k + 1)2

(
5
27

+
16k4(20k2 − 4k + 1)

(12k2 + 4k − 1)3
− 8k2(10k − 1)

(6k + 1)3

)
∞∑

p=0

Y∞(p)Yk(p) =
(2k + 1)2

(4k + 1)

(
1
9
− k

4(2k − 1)

(
16k(2k − 1)2(18k − 1)

(6k + 1)4

))
.

∞∑
p=0

(Y∞(p))2 =
11
81
.

So altogether,

dis(Yk, Y∞) =
−2936

3375 (1 + 4 k)2
+

126656
16875 (1 + 4 k)

+
32

6075 (6 k − 1)3
+

632
30375 (6 k − 1)2

+
5144

151875 (6 k − 1)
+

128
81 (1 + 6 k)4

−

1280
243 (1 + 6 k)3

+
2056

243 (1 + 6 k)2
− 2744

243 (1 + 6 k)
.

Now, having exact term for dis(Yk, Y∞) presented in the form of partial fractions
it is straightforward that limk→∞ dis(Yk, Y∞) = 0. This method is sufficient
to show uniform convergence since (Yk(p) − Y∞(p))2 ≤ dis(Yk, Y∞), for all p.
Therefore,

∣∣Yk(p)− Y∞(p)
∣∣ ≤

√
dis(Yk, Y∞) . (73)
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Corollary 48 For fixed k > 0 and p > 0

lim
n→∞

Gk
n(p)

F k
n (p)

= 1−
(

2k − 1
2k

)p−1

. (74)

Proof. We are going to combine together formula 50 from Lemma 31 with the
main result given in formula 67 from Theorem 39. Simple calculation on limits
since for p > 0

lim
n→∞

Gk
n(p)

F k
n (p)

= lim
n→∞

Gk
n(p)
F k

n

· lim
n→∞

F k
n

F k
n (p)

=
(

p

2p+1
− p

(2k − 1)p−1

4pkp−1

)(
2p+1

p

)
= 1−

(
2k − 1

2k

)p−1

.

�
The result shows how big asymptotically the size of the fraction of simple tau-
tologies with p premises among all formulas of p premises is. We can see that
with p growing this fraction becomes closer and closer to 1. Of course the frac-
tion of all, not only simple, tautologies with p premises is even larger. So the
“density of truth” within the classes of formulas of p premises can be as big as we
wish. For every ε > 0 we can effectively find p such that among formulas with
p premises almost all formulas (except for a tiny fraction of the size ε ) asymp-
totically are tautologies. This should be contrasted with the results proved in
Theorem 30. It shows that density of truth for all p′s together is always of the
size O(1/k). The result for every p treated separately is very different. Based
on Corollary 48 we may try to estimate the probability for a random long im-
plicational formula to be a tautology by the “probabilistic algorithm” algorithm
below.

Given: Implicational formula φ from Fk .
Problem: Estimate the chances for φ to be a tautology.
Solution: Count the number of premises p in φ. Then the chances for

φ to be a tautology are 1− ((2k − 1)/2k)p−1.

The algorithm above can be performed quickly in terms of the length of formula
φ. In the worst case we need a linear time to compute the number of premises
of φ. However the average case time for the algorithm is O(log n). The accuracy
of the algorithm can be estimated using Equation 73.
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