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Abstract

This paper considers logical formulas built on the single binary connector of implica-
tion and a finite number of variables. When the number of variables becomes large, we
prove the following quantitative results: asymptotically, all classical tautologies are simple
tautologies. It follows that asymptotically, all classical tautologies are intuitionistic.
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1 Introduction

We investigate the proportion between the number of formulas of size n that are tautologies
against the number of all formulas of size n for propositional formulas built on implication and
k variables. Our interest lays in proving the existence and computing the limit of that fraction
when n grows to infinity. It can be called the density of truth for the logic with k variables.
After isolating the special class of formulas called simple tautologies, of density 1/k+O(1/k2),
we exhibit some families of non-tautologies whose cumulated density is 1− 1/k−O(1/k2). It
follows that the fraction of tautologies, for large k, is very close to the lower bound determined
by simple tautologies. A consequence is that classical and intuitionistic logics are close to
each other when the number of propositional variables is large.

This work is a part of the research in which the likelihood of truth is estimated for the
propositional logic with a restricted number of variables. We refer to Gardy [4] for a survey
on probability distribution on Boolean functions induced by random Boolean expressions.
For the purely implicational logic of one variable, and at the same time simple type systems,
the exact value of the density of truth was computed in the paper of Moczurad, Tyszkiewicz
and Zaionc [9]. The classical logic of one variable and the two connectors implication and
negation was studied in Zaionc [12]. Over the same language, the exact proportion between
intuitionistic and classical logics has been determined in Kostrzycka and Zaionc [6]. Some
variants involving formulas with other logical connectives have also been considered. The
case of and/or connectors received much attention – see Lefmann and Savický [7], Chauvin,
Flajolet, Gardy and Gittenberger [1] and Gardy and Woods [5]. Matecki [8] considered the
case of the equivalence connector.
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We next give a couple of definitions. Section 2 briefly presents the use of enumeration
via generating functions and analytic combinatorics, which constitutes the main tool we shall
use. The different classes of formulas we consider are described in Section 3, while Section 4
is devoted to the enumeration of these classes and the computation of their densities.

Definition 1 Let {x1, x2, . . . , xk} a set of Boolean propositional variables. We define Fk to
be the set of all Boolean expressions (or formulas) over these variables and the implication
connector →. Boolean expressions are defined recursively from Boolean variables and the
implication connector by the following grammar: F := x1 | . . . | xk | (F → F ).

Obviously the expressions can be represented by binary planar trees, suitably labeled:
their internal nodes are labeled by the connector → and their leaves by some Boolean variables.
By ‖φ‖ we mean the size of expression φ which we define as the total number of occurrences of
propositional variables in the expression (or leaves in the tree representation of the expression).
Parentheses which are sometimes necessary and the implication sign itself are not included in
the size of expression. Formally,

‖xi‖ = 1 and ‖φ→ ψ‖ = ‖φ‖ + ‖ψ‖ .
We denote by Fn

k the set of expressions of Fk of size n.
We can now define the canonical form of an expression. Let T be an expression. It

can be decomposed with respect to its right branch – see Figure 1. Hence it is of the form

→

A1 →

A2 →

Ap r(T )

Figure 1: The canonical decomposition of a tree.

A1 → (A2 → (. . . → (Ap → r(T ))) . . .); we shall write it

T = A1, . . . , Ap → r(T ).

The formulas Ai are called the premises of T and r(T ), the rightmost leaf of the tree, is called
the goal of T . Of course the expression T = A1 → (A2 → (. . . → (Ap → r(T ))) . . .) is logically
equivalent with A1 ∨A2 ∨ . . . ∨Ap ∨ r(T ), where Ai stands for negation of Ai.

For a subset A ⊆ Fk we define the density µ(A) as:

µ(A) = lim
n→∞

|{t ∈ A : ‖t‖ = n}|
|{t ∈ Fk : ‖t‖ = n}|

if the limit exists. The number µ(A) if it exists is an asymptotic probability of finding a
formula from the class A among all formulas from Fk; it can be interpreted as the asymptotic
density of the set A in the set Fk. It can be seen immediately that the density µ is finitely
additive so if A and B are disjoint classes of formulas such that µ(A) and µ(B) exist then
µ(A ∪ B) also exists and µ(A ∪ B) = µ(A) + µ(B).

2



2 Generating functions

In this paper we investigate the proportion between the number of formulas of size n that
are tautologies against the number of all formulas of size n for propositional formulas of the
language Fk. Our interest lays in finding the limit of that fraction when n grows to infinity.
For this purpose analytic combinatorics has developed an extremely powerful tool, in the form
of generating series and generating functions. A nice exposition of the method can be found
in Wilf [11], or in Flajolet, Sedgewick [2, 3]; see also Gardy [4, 5.2] for a systematic application
of these technics to densities for Boolean functions. As the reader may now expect, while
working with propositional logic we will be often concerned with complex analysis, analytic
functions and their singularities.

Let A = (A0, A1, A2, . . .) be a sequence of real numbers. The ordinary generating series
for A is the formal power series

∑∞
n=0Anz

n. And, of course, formal power series are in one-to-
one correspondence to sequences. However, considering z as a complex variable, this series,
as known from the theory of analytic functions, converges uniformly to a function fA(z) in
some open disc {z ∈ C : |z| < R} of maximal diameter, and R > 0 is called its radius of
convergence. So with the sequence A we can associate a complex function fA(z), called the
ordinary generating function for A, defined in a neighborhood of 0. This correspondence
is one-to-one again (unless R = 0), since, as it is well known from the theory of analytic
functions, the expansion of a complex function f(z), analytic in a neighborhood of z0, into a
power series

∑∞
n=0An(z − z0)

n is unique.

Definition 2 Let F be a series in powers of z. Then by the symbol [zn]{F} we will mean
the coefficient of zn in the series expansion of F .

Many questions concerning the asymptotic behavior of A can be efficiently resolved by
analyzing the behavior of fA at the complex circle |z| = R. This is the approach we take to
determine the asymptotic fraction of tautologies and many other classes of formulas among
all formulas of a given size.

Each set of expressions is defined recursively from simpler sets; we build the generating
functions enumerating the elements of these sets by size (number of leaves), using univariate
functions with the variable z marking the leaves, and obtain a generating function φ(z) for
the set under consideration. We then extract the coefficient [zn]φ(z) and obtain the density
of the set under study as limn→∞[zn]φ(z)/[zn]f(z), f(z) being the generating function for the
set of all expressions of Fk.

The Catalan number Cn is defined as the number of complete binary trees with n internal
nodes and n+ 1 leaves. Basic results about Catalan numbers and its generating function are
summarized below.

Proposition 3 Let C(z) be the generating function enumerating Catalan numbers; it satis-
fies:

C(z) = 1 + zC(z)2,

and is equal to:

C(z) =
1 −

√
1 − 4z

2z
.

Its coefficients are

Cn =
1

n+ 1

(

2n

n

)

.
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It follows that the number of Boolean expressions of size n over k variables is knCn−1, since
such an expression is obtained by labelling the n leaves with any of the variables x1, . . . , xk.

As an example, in the rest of this section we show how we can obtain the generating func-
tion f(z) for the set of all the expressions built on k variables and the implication connector,
before defining several subsets of expressions in Section 3 and computing their generating
functions in Section 4.

Proposition 4 The generating function enumerating the set Fk of all Boolean expressions
over k variables is

f(z) = kz C(kz) =
1 −

√
1 − 4kz

2
.

Proof: Using the canonical form of an expression, we know that a tree is a (possibly empty)
sequence of trees, followed by a leaf – see Figure 1. The function f(z) thus satisfies

f(z) =
kz

1 − f(z)
, ie f(z) = kz + f(z)2.

Solving the equation and choosing between the two possibilities (f(0) = 0) gives the solution.

The last result gives another way to obtain the number of expressions of size n by extract-
ing the coefficients from the generating function given in proposition 4.

3 Tautologies and non-tautologies

Let us now define several classes of expressions, all of them being special kinds of either
tautologies or non-tautologies.

Definition 5 We define the following subsets of Fk:

• Clk is the set of all classical tautologies i.e. formulas which are true under any valua-
tion.

• Intk is the set of all intuitionistic tautologies i.e. formulas for which there are closed
lambda terms (constructive proofs) of type identical with the formula.

• Piercek is the set of all Pierce expressions i.e. classical tautologies which are not
intuitionistic ones.

• SNk is the set of simple expressions which are not classical tautologies, defined as

T = A1, . . . , Ap → r(T ),

such that for all i, r(Ai) 6= r(T ).

• Gk is the set of simple tautologies i.e. expressions that can be written as

T = A1, . . . , Ap → r(T ),

where there exists i such that Ai is a variable equal to r(T ).
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• LNk is the set of less simple expressions that are not classical tautologies, defined as
the set of trees of the form

T = B1, . . . , Bi−1, C,Bi, . . . , Bp → r(T ),

such that
C = C1, C2, . . . , Cq → r(C),

where r(C) = r(T ), q > 1, and

C1 = D1,D2, . . . ,Dr → r(D),

where r(D) 6= r(T ), r > 0, and the following holds: for all j, r(Bj) 6∈ {r(T ), r(D)} and
r(Dj) 6∈ {r(T ), r(D)}.

Adding a superscript n to the sets we have just defined means that we consider only expressions
of size exactly n (the tree that represents the expression has n leaves).

Note that simple tautologies are instuitionistic ones since one of the premises is equal to
the goal. The obvious relations between classes above are the following.

SNk ∪ LNk ⊂ Fk \ Clk
SNk ∩ LNk = ∅

Gk ( Intk ( Clk ( Fk \ (SNk ∪ LNk)

Piercek = Clk \ Intk

Our aim in the rest of this paper will be to compute the densities of these sets. Results are
summed up in Figure 2; proofs are given in the following section. As a consequence, we obtain
the following result, giving a positive answer to the conjecture of [9, page 593].

Theorem 6 Asymptotically (for a large number k of Boolean variables), all tautologies are
simple i.e.

lim
k→∞

µ(Gk)

µ(Clk)
= 1.

Proof: We know that for any k the density of classical logic with k propositional variables
µ(Clk) exists. Such a result is obtained by standard technics in analysis of algorithms; we
skip the details and refer the interested reader to Flajolet and Sedgewick [3] or to [4].

Since Gk ⊂ Clk ⊂ Fk \ (SNk ∪ LNk), and from the densities obtained in propositions 8,
9 and 10, we have

4k + 1

(2k + 1)2
= µ(Gk) 6 µ(Clk) 6 1 −

(

k(k − 1)

(k + 1)2
+

2k(k − 1)2

(k + 2)4

)

.

The upper and lower bounds are asymptotically identical, equal to 1/k +O(1/k2).

Using the very same argument we can also obtain a result relating the asymptotic behavior
of classical versus intuitionistic logics.

5



Corollary 7 Asymptotically (for a large number k of Boolean variables), classical tautologies
are intuitionistic i.e.

lim
k→∞

µ−(Intk)

µ(Clk)
= 1

where µ−(Intk) = lim infn→∞
|Intn

k
|

|Fn
k
| .

Proof: From the fact that Gk ⊂ Intk ⊂ Clk, we have

µ(Gk) = lim
n→∞

|Gn
k |

|Fn
k |

6 lim inf
n→∞

|Intnk |
|Fn

k |
6 lim sup

n→∞

|Intnk |
|Fn

k |
6 lim

n→∞

|Clnk |
|Fn

k |
= µ(Clk).

The result follows from the fact that both µ(Gk) and µ(Clk) are equal to 1/k +O(1/k2).

This result also allows to estimate the size of the difference between classical and intu-
itionistic logics (so called Pierce formulas). Details are given in section 4.4.

Fk\Clk : Non − tautologies Clk : Tautologies

SNk : Simple non − tautologies

k(k−1)
(k+1)2 = 1 − 3

k
+ O( 1

k2 )

Intk

Gk

Simple

tautologies

4k+1
(2k+1)2

= 1
k

+ O( 1
k2 )

LNk : Less simple

non − tautologies

2k(k−1)2

(k+2)4 = 2
k

+ O( 1
k2 )

Other

non−

tautologies

P iercek

= 63
4k2 + O( 1

k3 )

Figure 2: Densities of simple tautologies, simple and less simple non-tautologies.
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4 Enumeration of classes

We now compute the densities of the three sets SNk, Gk and LNk. The computation of
these densities is done in a systematic way. First each set of expressions is defined recursively
from simpler sets; this allows to build the generating functions enumerating the elements of
these sets by their size (the number of leaves), and to obtain a generating function φ for the
considered class. Then we extract the coefficient [zn]φ(z) and obtain the density of the set
under study as limn→∞[zn]φ(z)/[zn]f(z).

The last part deals with Pierce formulas. Although we don’t know if this set of formulas
has a density, we give some bounds and show that their order is Θ(1/k2).

4.1 Simple non-tautologies

We first consider the set SNk of simple expressions that are non-tautologies. If T ∈ SNk,
then T is of the kind

T = A1, . . . , Ap → r(T ),

such that for all i, r(Ai) 6= r(T ). We first check that this is indeed not a tautology. Just
consider the following valuation of propositional variables. Define r(T ) as false and all r(Ai) as
true. Under this valuation the whole expression is false. Let us next compute the generating
function SN(z) associated to SNk.

First fix a Boolean variable α and consider all trees with r(T ) = α. Such a tree is a simple
non-tautology if and only if all its premises Ai satisfy r(Ai) 6= α. The generating function
of all possibles premises is k−1

k
f(z). As a simple non-tautology with goal α is a sequence of

such premises followed by the leaf α, the generating function SNα of simple non-tautologies
with goal α is equal to

SNα(z) =
z

1 − k−1
k
f(z)

.

Since α can be chosen arbitrarily among the k litterals, we have SN(z) = k · SNα(z), which
gives

SN(z) =
kz

1 − k−1
k
f(z)

.

Proposition 8 The density of simple non-tautologies exists and is equal to

µ(SNk) =
k(k − 1)

(k + 1)2
.

For large k, this density is 1 − 3/k +O(1/k2).

Proof: This result was already given in the paper [9, page 586], with a different proof. We
give an alternative proof here. If it exists, the density is given by the following formula:

µ(SNk) = lim
n→∞

|SNn
k |

|Fn
k |

= lim
n→∞

[zn]SN(z)

[zn]f(z)
.

After modifying the denominator of the generating function SN(z), we obtain :

SN(z) =
P (z) + kz(1 − k)

√
1 − 4kz

2(1 + z(k − 1)2)
,
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where P (z) is a suitable polynomial. The denominator of the rational fraction SN(z) has a
unique zero ρ = −1/(k−1)2. However this value also cancels the numerator of the expression,
and is not an actual pole. Hence the only singularity that matters asymptotically is z = 1/4k.
Putting aside the error term, we obtain

[zn]SN(z) = −2k2(k − 1)

(k + 1)2
[zn−1]

√
1 − 4kz

= −2k2(k − 1)

(k + 1)2
(4k)n−1[zn−1]

√
1 − z

= −2k(k − 1)

(k + 1)2
kn · (−2)Cn−2

=
4k(k − 1)

(k + 1)2
knCn−2.

This gives

µ(SNk) = lim
n→∞

|SNn
k |

|Fn
k |

=
4k(k − 1)

(k + 1)2
lim

n→∞

Cn−2

Cn−1
=
k(k − 1)

(k + 1)2
,

hence the density of SNk exists and is equal to k(k − 1)/(k + 1)2.

4.2 Simple tautologies

If T is a simple tautology, then T can be written as

T = A1, . . . , Ap → r(T ),

with one of the Ai equal to r(T ). It is straightforward to check that T is indeed a tautology
since it is logically equivalent with

T ∼ A1 ∨ . . . ∨ r(T ) ∨ . . . ∨Ap ∨ r(T ).

which obviously evaluates to true.
Let us now compute the generating function of simple tautologies. A tree T is not a simple

tautology if and only if all its premises are different from r(T ) – see figure 3. The generating
function for Fk \Gk is therefore equal to kz/(1 − (f(z) − z)). It follows that the generating
function of Gk is

G(z) = f(z) − kz

1 + z − f(z)
.

Proposition 9 The limit density of simple tautologies on k variables exists and is equal to

µ(Gk) =
4k + 1

(2k + 1)2
.

For large k, this density is asymptotically equal to 1/k − 3/4k2 +O(1/k3).
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→

A1 6= r(T ) →

A2 6= r(T ) →

Ap 6= r(T ) r(T )

Figure 3: Trees that are not simple tautologies.

Proof: Another, earlier proof of this result is given in the paper [9, page 584]. We give here
an alternative proof. The generating function G(z) can be written as

G(z) =
P (z) − (1 + z)

√
1 − 4kz

2(1 + k + z)
,

with P a suitable polynomial. Let ρ be its pole; ρ = −1−k. But ρ is larger that the algebraic
singularity 1/(4k); hence 1/(4k) is the dominant singularity of G(z). Finally we obtain (up
to the error term)

[zn]G(z) = − 2k

(2k + 1)2
[zn]

√
1 − 4kz − 2k

(2k + 1)2
[zn−1]

√
1 − 4kz

= − 2k

(2k + 1)2
4nkn[zn]

√
1 − z − 2k

(2k + 1)2
4n−1kn−1[zn−1]

√
1 − z

=
4k

(2k + 1)2
knCn−1 +

4

(2k + 1)2
knCn−2.

Let us prove the existence and compute the value of the density of Gn
k .

µ(Gk) = lim
n→∞

|Gn
k |

|Fn
k |

= lim
n→∞

( 4k

(2k + 1)2
knCn−1 +

4

(2k + 1)2
knCn−2

)

· 1

knCn−1

=
4k

(2k + 1)2
+

4

(2k + 1)2
· lim

n→∞

Cn−2

Cn−1

=
4k

(2k + 1)2
+

4

(2k + 1)2
· 1

4

=
4k + 1

(2k + 1)2
.

This density does exist, and is equal to : (4k + 1)/(2k + 1)2.

4.3 Less simple non-tautologies

In the family SNk of simple non-tautologies, we did not allow any premise to have a rightmost
leaf equal to r(T ). But here we will consider trees with exactly one such premise.

We recall that a tree T defines a less simple non-tautology if it is of the kind T =
B1, . . . , Bi−1, C,Bi, . . . , Bp → r(T ), where C = C1, . . . , Cq → r(C), with r(C) = r(T ), q > 1,
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and C1 = D1,D2, . . . ,Dr → r(D) is such that r(D) 6= r(T ), r > 0, and the following holds:
for all j, r(Bj) 6∈ {r(T ), r(D)} and r(Dj) 6∈ {r(T ), r(D)}. See figure 4 for the general form of
the tree and figure 5 for the subtree C; in these figures, if a subtree A is underlined, it means
that it is subject to the constraint r(A) 6∈ {r(T ), r(D)}.

→

B1 →

Bi−1 →

C →

Bi →

Bp r(T )

Figure 4: Less simple non-tautologies.

→

→

D1 →

Dr r(D) 6= r(T )

→

C2 →

Cq r(C) = r(T )

Figure 5: Subtree C of a less simple non-tautology.

Let us first prove that such a tree is not a tautology. For this, consider the assignement
where all the variables are true, except r(T ) and r(D) which are false; under this assignement,
the whole expression evaluates to false – to check this, just notice that the function computed
by such a tree can be developped into a conjuction of terms, one of them being

∨

i r(Bi) ∨
r(T ) ∨ ∨

i r(Di) ∨ r(D).
We shall now compute the generating function of LNk. Let us fix α and β two distinct

literals. We shall first compute ψ(z) the generating functions of all trees LNα,β
k from LNk

such that r(T ) = α and r(D) = β. By symmetry, ψ(z) is independent of the choice of α and
β.

Let b(z) be the generating function of all trees T ∈ Fk such that r(T ) 6∈ {α, β}. Of
course b(z) = (k − 2)/k · f(z). This generating function enumerate the possible subtrees Bj

but also the possible subtrees Dj . Thus, the generating function of all possible trees for D is
d(z) = z/(1−b(z)), since it is a sequence of trees Dj such that r(Dj) 6∈ {α, β}, followed by the
leaf β. In the same way, the generating function for the subtree C is c(z) = d(z)·1/(1−f(z))·z.
Note that a tree of LNα,β

k is built as a sequence of trees Bj with r(Bj) 6∈ {α, β}, then a subtree
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C as described as above, another sequence of trees Bj with r(Bj) 6∈ {α, β}, followed by the

leaf α. Moreover, this decomposition is unique. The generating function for LNα,β
k is thus

equal to

ψ(z) =
1

1 − b(z)
c(z)

1

1 − b(z)
z.

Now it can be easily seen that LNk is the disjoint union of the LNα,β
k . Indeed, given a

tree T ∈ LNk, then α is equal to r(T ) and the premise C of T is uniquely determined because
it is the only premise of T with goal r(T ). Thus, β is uniquely determined as well since it is
the goal of the first premise of C. It follows that φ(z) = k(k − 1)ψ(z).

Proposition 10 The density of less simple non-tautologies is equal to

µ(LNk) =
2k(k − 1)2

(k + 2)4
.

For large k it is equal to 2/k +O(1/k2).

Proof: After modifying the denominator of the generating function φ(z), we obtain :

φ(z) =
P (z) + k(k − 1)(−k2 + (2k3 − 6k2 + 8)z)z2

√
1 − 4kz

2(2 + (k − 2)2z)3
,

where P (z) is a suitable polynomial. The denominator of the rational fraction φ(z) has a zero
ρ = −2/(k−2)2. However this value also cancels the numerator (and its first two derivatives)
of the expression, and is not an actual pole of φ. Hence the only singularity that matters
asymptotically is z = 1/4k. Putting aside the error term, we obtain :

[zn]LN(z) = − k3(k − 1)

2(2 + (k−2)2

4k
)3

[zn−2]
√

1 − 4kz

+
k(k − 1)(2k3 − 6k2 + 8)

2(2 + (k−2)2

4k
)3

[zn−3]
√

1 − 4kz

= − k3(k − 1)

2(2 + (k−2)2

4k
)3

4n−2kn−2[zn−2]
√

1 − z

+
k(k − 1)(2k3 − 6k2 + 8)

2(2 + (k−2)2

4k
)3

4n−3kn−3[zn−3]
√

1 − z

=
kn+1(k − 1)

(2 + (k−2)2

4k
)3
Cn−3 −

kn−2(k − 1)(2k3 − 6k2 + 8)

(2 + (k−2)2

4k
)3

Cn−4.

Let us prove the existence and compute the value of the density of LNn
k :

µ(LN) = lim
n→∞

|LNn
k |

|Fn
k |

= lim
n→∞

( kn+1(k − 1)

(2 + (k−2)2

4k
)3

Cn−3

knCn−1
− kn−2(k − 1)(2k3 − 6k2 + 8)

(2 + (k−2)2

4k
)3

Cn−4

knCn−1

)

=
64k4(k − 1)

(k + 2)6
· lim

n→∞

Cn−3

Cn−1
− 64k(k − 1)(2k3 − 6k2 + 8)

(k + 2)6
· lim

n→∞

Cn−4

Cn−1

=
4k4(k − 1) − k(k − 1)(2k3 − 6k2 + 8)

(k + 2)6
=

2k(k − 1)2

(k + 2)4
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This density does exist, and is equal to:

2k(k − 1)2/((k + 2)4).

For large k this is asymptotically equal to 2/k +O(1/k2).

4.4 Pierce formulas

We are ready to estimate the number of Pierce formulas. Although we don’t know if the set of

Pierce formulas has a density, we shall give bounds on lim supn→∞
|Piercen

k
|

|Fn
k
| and lim infn→∞

|Piercen
k
|

|Fn
k
| .

A simple upper bound on Piercek can be obtained from

Piercek = Clk \ Intk ⊂ Fk \ (SNk ∪ LNk ∪Gk).

Since SNk, LNk and Gk are disjoint we have a simple upper estimation based on propositions
8, 9 and 10:

lim sup
n→∞

|Piercenk |
|Fn

k |
6 1 − k(k − 1)

(k + 1)2
− 2k(k − 1)2

(k + 2)4
− 4k + 1

(2k + 1)2
=

63

4k2
+O(

1

k3
).

However, we can obtain a sharper bound on the number of Pierce formulas. For this,
we next bound the density of tautologies which are not simple – this density exists since we
already know that both the density of all tautologies and the density of simple tautologies
exist. Note that this result gives an alternative proof for Theorem 6.

Lemma 11 The density of non simple tautologies T such that exactly one premise has a goal
equal to r(T ) is bounded from above by 5/k2 +O(1/k3).

Proof: Let A be a non simple tautology with goal r(A) = α. Let p be the number of premises
of A. We call B the premise of A whose goal is r(A) and α1, . . . , αp−1 the goal of the premises
other than B. By hypothesis, αi 6= α for all i ∈ {1, . . . , p−1}. Of course B cannot be reduced
to a leaf (otherwise A would be a simple tautology). Let us decompose B = (B1, . . . , Bm, α),
with m > 1. As B = B1 ∧ . . . ∧ Bm ∧ α, by developping the expression A, we obtain that
necessarily, for all j ∈ {1, . . . ,m},

Bj ∨ α1 . . . ∨ αp−1 ∨ α

computes true. Let us denote C(α1,...,αp−1,α) the set of trees such that

C ∨ α1 . . . ∨ αp−1 ∨ α

computes true. Let C ∈ C(α1,...,αp−1,α).

• If C is reduced to a leaf γ then necessarily γ ∈ {α1, . . . , αp−1}.

• Otherwise, let us decompose C = (C1, . . . , Cs, γ) with s > 1. Let γi = r(Ci). Then

γ1 ∨ . . . ∨ γs ∨ γ ∨ α1 . . . ∨ αp−1 ∨ α

has to evaluate to true. It follows that α ∈ {γ1, . . . , γs} or γ ∈ {γ1, . . . , γs, α1, . . . , αp−1}.
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We shall now compute a generating function c(α1,...,αp−1,α) giving an upper bound on the
number of trees of C(α1,...,αp−1,α). Let us define

c(α1,...,αp−1,α)(z) = (p−1)z+
1

1 − ((k − 1)/k)f(z)
· f(z)

k
· 1

1 − f(z)
·kz+

∞
∑

s=1

f(z)s · (s+p−1)z

the first term corresponding to the first point above, the second term corresponding to the
case α ∈ {γ1, . . . , γs} and the third term to the case γ ∈ {γ1, . . . , γs, α1, . . . , αp−1}. This
generating function depends only on p; thus we shall now denote it by cp. Let us now define

bp(z) =
cp(z)

1 − cp(z)
· z.

This function gives an upper bound on the number of trees B (for p > 1 and α,α1, . . . , αp−1

fixed) such that
B ∨ α1 . . . ∨ αp−1 ∨ α

computes true. Of course

bp(z) 6 b̃p(z) := cp(z) +
(cp(z))

2

1 − f(z)
.

We now define
ap(z) = p · ((k − 1)/k · f(z))p−1 · b̃p(z) · z · k.

The generating function ap gives an upper bound on the number of non simple tautologies
A with p premises, exactly one of them having a goal equal to r(A). Indeed, z corresponds
to r(A) = α, k corresponds to the choice of α among the litterals and p corresponds to the
position of the unique premise with goal α.

We now define a(z) =
∑∞

p=1 ap(z). This function bounds the number of non simple
tautologies A with only on premise with goal r(A). The computation based on the generating
function defined above leads to an asymptotic density 5/k2 +O(1/k3).

Lemma 12 The density of non simple tautologies T such that exactly two premises have a
goal equal to r(T ) is O(1/k3).

Proof: Let us consider a non simple tautology A with exactly two premises B1 and B2 having
a goal equal to r(A). Let α1, . . . , αp−2 the goals of the other premises. Since A is not simple,
both B1 and B2 are not reduced to a leaf. Let C be the first premise of B1, and D be the first
premise of B2. Let γ be the goal of C and γ1, . . . , γs the goals of its premises (with s > 0).
We define δ, δ1, . . . , δt the corresponding litterals for the tree D. Since A is a tautology we
can argue as in the previous lemma and we obtain that necessarily

γ1 ∨ . . . ∨ γs ∨ γ ∨ δ1 ∨ . . . ∨ δt ∨ δ ∨ α1 . . . ∨ αp−2 ∨ α

evaluates to true. The same method as in the previous lemma (not detailed here) leads to a
density O(1/k3).
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Lemma 13 The asymptotic density of trees T such that at least three premises have a goal
equal to r(T ) is O(1/k3).

Proof: The generating function of this family of trees is equal to

(

1

1 − (k/(k − 1))f(z)
· f(z)

k

)3

· 1

1 − f(z)
· kz.

We obtain a density O(1/k3).

Proposition 14 The asymptotic density of non simple tautologies is bounded from above by
5/k2 +O(1/k3).

Proof: A tautology is not reduced to a leaf. Moreover, a tautology T has (at least) a premise
with goal r(T ): otherwise, it would be a simple non-tautology. The density of non simple
tautologies is thus bounded from above by the sum of the three densities obtained in lemmas
11, 12 and 13. Hence it is bounded above by 5/k2 +O(1/k3).

We can obtain a lower bound for Pierce formulas by the following argument. Consider
special formulas from Fk of the form ((a → T ) → a) → a where T = A1, . . . , Ap → r(T )
is a simple non-tautology taken from Fk (see section 4.1) and variable a differs from r(T ).
We observe that ((a → T ) → a) → a must be a Pierce formula. It is obviously a classical
tautology. Suppose ((a → T ) → a) → a is also an intuitionistic tautology. It means that
there must exist a closed term of the type ((a→ T ) → a) → a. The long normal form of this
term has the form λp(a→T )→a.p(λqa.t) where t is a term of type T with only free variables
p and q. Consider a closed term λp(a→T )→aλqa.t. The type of this term is the implicational
formula

((a→ T ) → a) → (a→ T ).

But this type is again a simple non-tautology since the variables a and r(T ) are different.
So the formula is unprovable classically and therefore intuitionistically too; contradiction.
For more details about relation between intuitionistic logic and lambda calculus consult for
example Sørensen, Urzyczyn [10].

Now we have to count this family. The number of such formulas is (k−1) · |SNn−3
k |. Thus

the density of this special set of Pierce formulas exists and is equal to

lim
n→∞

(k − 1) · |SNn−3
k |

|Fn
k |

= lim
n→∞

(k − 1) · |SNn−3
k |

|Fn−3
k |

· |F
n−3
k |
|Fn

k |
=

1

64k2

(k − 1)2

(k + 1)2

since limn→∞ |Fn−3
k |/|Fn

k | = 1/(4k)3.

Proposition 15 We have the following bounds on the number of Pierce formulas:

1

64k2
−O

(

1

k3

)

6 lim inf
n→∞

|Piercenk |
|Fn

k |
6 lim sup

n→∞

|Piercenk |
|Fn

k |
6

5

k2
+O

(

1

k3

)

.

Proof: The lower bound comes from the previous discussion. Since Pierce formulas are non
simple tautologies, the upper bound is a consequence of proposition 14.
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5 Final remarks

We have shown that asymptotically, all tautologies over implication are simple, i.e. one of
the premises is equal to the goal. The method developped in this paper extends to the logic
of implication with both positive and negative litterals. In this new setting again, we can
prove that most of the tautologies, when the number of variables becomes large, exhibit a
very simple structure; more precisely, most of the tautologies have one of their premises equal
to the goal (as before), or have two of their premises which are opposite litterals.

Some questions remain about the set of Pierce formulas. We conjecture that for any k, the
densities µ(Intk) and µ(Piercek) exist. If it is the case, it would be interesting to evaluate
the asymptotic densities of these sets.
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