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Abstract

The paper solves the problem of finding the asymptotic probability
of the set of tautologies of classical logic with one propositional variable,
implication and negation. We investigate the proportion of tautologies of
the given length n among the number of all formulas of length n. We
are especially interested in asymptotic behavior of this proportion when
n→∞. If the limit exists it represents the real number between 0 and 1
which we may call density of tautologies for the logic investigated. In the
paper [2] the existence of this limit for classical (and at the same time in-
tuitionistic) logic of implication built with exactly one variable is proved.
The present paper answers the question ”how much does the introduc-
tion of negation influence the ”density of tautologies” in the propositional
calculus of one variable?” While in the case of implicational calculus the
limit exists and is about 72.36% (see theorem 4.6 in the paper [2] ), in our
case the limit exists as well, but negation lowers the density of tautologies
to the level of about 42.32%.

1 Introduction

In this paper we examine the density of tautologies among all propositional
formulas built up from one propositional variable by means of implication and
negation. Our main result is a precise estimate of the number of tautologies
among formulas of length n with one propositional variable. This result was
partially motivated by the paper [2] in which it has been proved that among

∗Supported by the State Committee for Scientific Research (KBN ), research grant 8T11C
022 21

1



formulas with one variable the fraction of tautologies tends to 1/2 +
√

5/10 as
the length of formulas approaches infinity.

2 Implicational - negational formulas

In this section we present some properties of numbers characterizing the number
of formulas of the given length of our language.

The language of implicational - negational formulas of one propositional vari-
able a consists of formulas F built from a by means of negation and implication
only.

a ∈ F
φ→ ψ ∈ F if φ ∈ F and ψ ∈ F

¬φ ∈ F if φ ∈ F

We start this section by dividing the set of all formulas into four classes accord-
ing to their behavior on the two possible valuations. Since we have formulas
built with exactly one propositional variable a we can evaluate formulas by two
valuations: ν0 associating 0 to a and ν1 associating 1 to a. Therefore:

Definition 1 For any i, j ∈ {0, 1} by F i,j we mean the set of formulas φ such
that ν0(φ) = i and ν1(φ) = j. The four classes F i,j are ordered by assuming that
F i,j ≤ F i′,j′ if i ≤ i′ and j ≤ j′. On our four classes F i,j we can establish an
operation of implication ⇒ by F i,j ⇒ F i′,j′ = F i→i′,j→j′ where → stands for
the classical implication defined on the set {0, 1} and an operation of negation
by ¬F i,j = F¬i,¬j. For simplicity we will denote classes F i,j respectively by:
A := F0,0, B := F0,1, C := F1,0 and D := F1,1. Note that D is the class of all
tautologies in F and the atomic formula a ∈ B.

The order defined above forms the following two dimensional poset:
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Classes are defined in such a way that if φ ∈ F i,j and ψ ∈ F i′,j′ then φ → ψ ∈
F i,j ⇒ F i′,j′ and ¬φ ∈ ¬F i,j . The implication ⇒ and negation ¬ defined on
classes can be displayed by the following table.

⇒ A B C D ¬
A D D D D D
B C D C D C
C B B D D B
D A B C D A

Table 1

For technical reasons we are going to find the total number of formulas also in
classes obtained from the poset by projecting it in two possible ways. Let us
define new classes of formulas K = A∪C and L = B ∪D. The second projected
poset is defined as I = A ∪ B and J = C ∪ D.

The orders defined on projected classes form the following two one-dimensional
posets:

6

K

L

6

I

J

We define in the natural way implication ⇒ and negation ¬ on the projected
classes {I,J } and {K,L}.

⇒ I J ¬
I J J J
J I J I

⇒ K L ¬
K L L L
L K L K

3 Counting formulas

First we have to establish the way the length of formulas is measured. By |φ|
we mean the length of the formula φ, which we define as the total number of
characters in the formula, including implication and negation signs. Parentheses
which are sometimes necessary are not included in the length of formula.
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|a| = 1 (1)
|φ→ ψ| = |φ|+ |ψ|+ 1 (2)

|¬φ| = |φ|+ 1 (3)

Definition 2 By Fn we mean the set of formulas of length n − 1. Subclasses
of formulas of length n are defined accordingly by:

An = Fn ∩ A (4)
Bn = Fn ∩ B (5)
Cn = Fn ∩ C (6)
Dn = Fn ∩ D (7)
In = Fn ∩ I (8)
Jn = Fn ∩ J (9)
Kn = Fn ∩ K (10)
Ln = Fn ∩ L (11)

Definition 3 The number Fn is given by the recurrence:

F0 = 0, F1 = 0, F2 = 1 (12)

Fn = Fn−1 +
n−1∑
i=1

FiFn−i (13)

Lemma 4 The number of formulas of length n− 1 is Fn. So Fn = #Fn.

Proof. Any formula of length n − 1 for n > 2 is either a negation of some
formula of length n − 2, for which the fragment Fn−1 is responsible, or is the
implication between pair of formulas of lengths i− 1 and n− i− 1, respectively.
The length of any of such implicational formula must be (i − 1) + (n − i −
1) + 1 which is exactly n − 1. Therefore the total number of such formulas is∑n−1

i=1 FiFn−i. �

4 Generating functions

The main tool we use for dealing with asymptotics of sequences of numbers are
generating functions. A nice exposition of the method can be found in [6] and
[1]. Also see [2] for the presentation of this method in logics.
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Many questions concerning the asymptotic behavior of a sequence A can be
efficiently resolved by analyzing the behavior of generating function fA at the
complex circle |z| = R. The key tool will be the following result due to Szegö [5]
[Thm. 8.4], see as well [6] [Thm. 5.3.2] which relates the generating functions of
numerical sequences with limit of fractions. For the technique of proof described
below please consult also [2]. We need the following much simpler versions of
the Szegö Lemma with one and two singularities

Lemma 5 (simplified Szegö lemma) Let v(z) be analytic in |z| < 1 with z = 1
the only singularity at the circle |z| = 1. If v(z) in the vicinity of z = 1 has an
expansion of the form

v(z) =
∑
p≥0

vp(1− z)
p
2 , (14)

where p > 0, and the branch chosen above for the expansion equals to v(0) for
z = 0, then

[zn]{v(z)} = v1

(
1/2
n

)
(−1)n +O(n−2). (15)

Lemma 6 Let v(z) be analytic in |z| < 1 with z = 1 and z = −1 the only sin-
gularities at the circle |z| = 1. If v(z) in the vicinity of z = 1 has the expansion
of the form

v(z) =
∑
p≥0

v(1)
p (1− z)p/2, (16)

where p > 0, and the branch chosen above for the expansion equals v(0) for
z = 0, and again v(z) in the vicinity of z = −1 has the expansion of the form

v(z) =
∑
p≥0

v(−1)
p (1 + z)p/2, (17)

where p > 0, and the branch chosen above for the expansion equals v(0) for
z = 0, then

[zn]{v(z)} =
(
v
(1)
1 + v

(−1)
1

)( 1/2
n

)
((−1)n + 1) +O(n−2). (18)
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From the formula above we can immediately see that for odd n [zn]{v(z)} =
O(n−2).

The symbol [zn]{v(z)} stands for the coefficient of zn in the exponential series
expansion of v(z). For technical reasons we will need to know the rate of growth

of the function
(

1/2
n

)
(−1)n which appears at the formula (15) and (18).

Lemma 7 For n ∈ N we have

(
1/2
n

)
(−1)n+1 = O(n−3/2) (19)

Proof. It can be obtained by the Stirling approximation formula

√
2πn

(n
e

)n

e
1

12n+1 < n! <
√

2πn
(n
e

)n

e
1

12n (20)

(see [3] for details, consult also lemma 7.5 page 589 of [2]). �

5 Calculating generating functions

We start by calculating the generating functions we will need.

Lemma 8 The generating function fF for the numbers Fn is

fF (x) =
1− x

2
−
√

(x+ 1)(1− 3x)
2

, (21)

Proof. The recurrence Fn = Fn−1 +
∑n−2

i=1 FiFn−i becomes the equality

fF (x) = xfF (x) + f2
F (x) + x2, (22)

since the recurrence fragment
∑n−2

i=1 FiFn−i exactly corresponds to the multi-
plication of power series. The term Fn−1 corresponds to the function xfF (x).
The quadratic term x2 corresponds to the first non-zero coefficient in the power

6



series of fF . Solving the equation we get two possible solutions: fF (x) =
(1 − x)/2 −

√
−3x2 − 2x+ 1/2 or fF (x) = (1 − x)/2 +

√
−3x2 − 2x+ 1/2.

We have to choose the first solution, since it corresponds to the assumption
fF (0) = F0 = 0 (see equality (12)). �

Definition 9 The numbers In and Jn are given by the recurrence:

I0 = 0, I1 = 0, I2 = 1 (23)
J0 = 0, J1 = 0, J2 = 0 (24)

In =
n−1∑
i=1

IiJn−i + Jn−1 (25)

Jn = Fn − In (26)

Lemma 10 The numbers of formulas from classes In,Jn are respectively In =
#In and Jn = #Jn.

Proof. A formula from In is either a negation of some formula from Jn−1 (see
the fragment Jn−1 ) or it is an implication between a pair of formulas of lengths
i and n− i respectively. The total number of such formulas is

∑n−1
i=1 IiJn−i. �

Lemma 11 The generating functions fI , fJ for numbers In, Jn are

fI(x) =
(fF (x)− 1− x)

2
+

√
4x2 + xfF (x)− fF (x) + 2x+ 1

2
, (27)

fJ(x) =
(fF (x) + 1 + x)

2
−
√

4x2 + xfF (x)− fF (x) + 2x+ 1
2

. (28)

Proof. The recurrence In =
∑n−1

i=1 IiJn−i + Jn−1 (see 25 ) becomes the
equality

fI(x) = fI(x)fJ(x) + zfJ(x) + x2 (29)

since the recurrence fragment
∑n−1

i=1 IiJn−i exactly corresponds to the multi-
plication of power series and Jn−1 corresponds to the function xfJ(x). The
quadratic term x2 corresponds to the first non-zero coefficient in the power se-
ries of fI . Together with the recurrence Jn = Fn − In it forms the system of
equations:
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fI(x) = fI(x)fJ(x) + xfJ(x) + x2, (30)
fJ(x) = fF (x)− fI(x). (31)

Solving the system we get

fI(x) = fI(x)fF (x)− f2
I (x) + xfF (x)− xfI(x) + x2 (32)

with two possible solutions:

fI(x) = (fF (x)− 1− x)/2−
√

4x2 + xfF (x)− fF (x) + 2x+ 1/2,

and

fI(x) = (fF (x)− 1− x)/2 +
√

4x2 + xfF (x)− fF (x) + 2x+ 1/2.

We have to choose the second solution, since it corresponds to the assumption
fI(0) = I0 = 0 ( see equation (23)).

A solution for fJ is similarly:

fJ(x) = (fF (x) + 1 + x)/2−
√

(4x2 + xfF (x)− fF (x) + 2x+ 1)/2. �

Definition 12 The numbers Kn and Ln are given by the recursion:

K0 = 0, K1 = 0, K2 = 0 (33)
L0 = 0, L1 = 0, L2 = 1 (34)

Kn =
n−1∑
i=1

LiKn−i +Kn−1 (35)

Ln = Fn −Kn (36)

Lemma 13 The numbers of formulas from classes Kn,Ln are Kn = #Kn and
Ln = #Ln respectively.

Proof. The proof is similar to the proof of lemma 10 �

Lemma 14 The generating functions fK , fL for numbers Kn, Ln are

fK(x) =
fF (x)− 1− x

2
+

√
xfF (x)− fF (x) + 2x+ 1

2
, (37)

fL(x) =
fF (x) + 1 + x

2
−
√
xfF (x)− fF (x) + 2x+ 1

2
. (38)

8



Proof. Calculations are similar as in the proof of lemma 11. The system of
equations to be solved is:

fK(x) = fK(x)fL(x) + xfL(x), (39)
fL(x) = fF (x)− fK(x). (40)

Notice the lack of the x2 term in the first equation. �

In order to make use of already solved classes, we design the recurrence, in such
a way that each class is defined in terms of the class C.

Definition 15 The numbers An, Bn, Cn and Dn are given by the recursions:

A0 = A1 = 0 , An = Kn − Cn

B0 = B1 = 0 , Bn = In −An = In −Kn + Cn

C0 = C1 = 0 , Cn =
∑n−1

i=1 CiDn−i +
∑n−1

i=1 AiBn−i

+
∑n−1

i=1 BiCn−i +Bn−1

D0 = D1 = 0 , Dn = In − Cn

Lemma 16 The numbers of formulas from classes An,Bn, Cn,Dn are respec-
tively: An = #An, Bn = #Bn, Cn = #Cn, Dn = #Dn.

Proof. It follows from the table 1 in definition 1. Any formula from Cn is either
a negation of some formula from Bn−1 or it is an implication between a pair of
formulas of lengths i and n−i respectively. According to Table 1 there are three
possible situations. The implication can be only between formulas which are
taken from the classes D and C or B and A or B and C respectively. The total
number of such formulas must be therefore

∑n−1
i=1 CiDn−i +

∑n−1
i=1 AiBn−i +∑n−1

i=1 BiCn−i. �

Lemma 17 The generating functions fA, fB , fC , fD for numbers
An, Bn, Cn, Dn are

fA = fK − fC , (41)
fB = fL − fD, (42)

fC =
(−1 + fJ + fK + x)

2
+ (43)

√
(1− fJ − fK − x)2 + 4(fIfK − f2

K + xfI − xfK)
2

,
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fD = fJ − fC . (44)

Proof. The recurrence given in definition 15 and lemma 16 becomes after a
closer examination the system of functional equations:

fA(x) = fK(x)− fC(x), (45)
fB(x) = fI(x)− fK(x) + fC(x), (46)
fC(x) = fD(x)fC(x) + fA(x)fB(x) + fB(x)fC(x) + xfB(x), (47)
fD(x) = fJ(x)− fC(x), (48)

By substituting into (47) and simplification we get:

fC(x) = [fJ(x)− fC(x)]fC(x) + [fI(x)− fK(x) + fC(x)](fK(x) + x) (49)

which is in fact a quadratic equation with respect to the unknown function fC .
Solving with boundary condition fC(0) = C0 = 0 we get:

fC =
(−1 + fJ + fK + x)

2
+ (50)

√
(1− fJ − fK − x)2 + 4(fIfK − f2

K + xfI − xfK)
2

From this and equations (45), (46) and (48) we find other functions. In particu-
lar the function fD which describes the numbers of tautologies is the following:

fD(x) =
(1 + fJ − fK − x)

2
− (51)√

(1− fJ − fK − x)2 − 4(−fIfK + f2
K − xfI + xfK)

2
,

where fI , fJ , fK are given in Lemmas 11 and 14.

After appropriate simplification we get the following formula for fD(x):

fD(x) =
1
8

(
8−

√
2
√

1 + 6x− x2 − Y −
√

2
√

1 + 6x+ 7x2 − Y− (52)
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2
√

1− 10x+ 3x2 − Y +
√

1 + 6x− x2 − Y
√

1 + 6x+ 7x2 − Y

)
,

where Y = (1− x)
√

(1 + x)(1− 3x).

�

6 From generating functions to asymptotic den-
sities

In this section we have gathered several proofs making substantial use of gen-
erating functions. In order to apply Szegö lemma 5 in the simplified version we
must calibrate functions fF , fD in such a way to obtain the singularity of the
smallest modulus at z = 1. Since the singularity of the smallest modulus for
functions fF , fD is at x = 3 we substitute x = 3z and obtain new calibrated
functions:

Definition 18

f̂D(x) = fD(x/3), (53)

f̂F (x) = fF (x/3). (54)

After simplification of the formula we get:

f̂D(x) =
1
24

[
24−

√
2
√

9 + 18x− x2 − Y −
√

2
√

9 + 18x+ 7x2 − Y (55)

−2
√

9− 30x+ x2 − Y +
√

9 + 18x− x2 − Y
√

9 + 18x+ 7x2 − Y

]
f̂F (x) =

1
6

(
3− x−

√
3
√

(1− x)(3 + x)
)

(56)

where Y =
√

3(x− 3)
√

(1− x)(3 + x).

Note that the relation between the coefficients of the power series f̂D and fD is
as follows: [xn]{fD(x)} =

(
[xn]{f̂D(x)}

)
3n. The same relation holds for f̂F

and fF : [xn]{fF (x)} =
(
[xn]{f̂F (x)}

)
3n.

Lemma 19 x = 1 is the only singularity of f̂D and f̂F located in |x| ≤ 1.
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Proof. It is obvious that f̂F (see 56) has only singularities at x = 1 and
x = −3. For f̂D (see (55) apart from x = 1 and x = 3 there can only be
singularity when the expression under the outer root signs become 0. Therefore
another possible singularities of f̂D are solutions of the following equations.

9 + 18x− x2 − Y = 0 (57)
9 + 18x+ 7x2 − Y = 0 (58)

9− 30x+ x2 − Y +
√

9 + 18x− x2 − Y
√

9 + 18x+ 7x2 − Y = 0 (59)

where Y =
√

3(x − 3)
√

(1− x)(3 + x). There are 7 complex solutions of those
equations. However the minimal modulus among them is approximately 1.2245.
So indeed x = 1 is the only singularity of f̂D(x) and f̂F (x) in |x| ≤ 1. �

Now we find the expansions of functions f̂D and f̂F into power series in the
vicinity of x = 1.

Theorem 20 Expansions of f̂D and f̂F in the vicinity of x = 1 are:

f̂F (x) = f0 + f1
√

1− x+ . . .

f̂D(x) = d0 + d1

√
1− x+ . . .

where

f0 =
1
3
,

f1 = − 1√
3
, (60)

d0 =

(
12−

√
13−

√
17−

√
2(
√

221− 9)
)

12
,

d1 = −1
2

√
1593 + 107

√
221 +

√
2781590 + 187110

√
221

23205
. (61)

Proof. Two first terms of the power series expansions have been found using
the Mathematica r© 1 package. �

Now let us enjoy fruits of our (and Mathematica) hard labor.
1Mathematica is a registered trademark of Wolfram Research
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Theorem 21 [Main result - the density of tautologies]

lim
n→∞

Dn

Fn
=

1(
4
√

13
) +

1(
4
√

17
) + (62)

+
1

2
√

2
(√

221− 9
) +

15

2
√

442
(√

221− 9
)

Proof. By the Szegö lemma sequences Dn and Fn can be expressed in terms
of d1, f1 (see (61), (60)). We get

Dn = [zn]{fD(z)} =
(
[zn]{f̂D(z)}

)
3n (63)

=
(
d1

(
1/2
n

)
(−1)n +O(n−2)

)
3n (64)

and

Fn = [zn]{fF (z)} =
(
[zn]{f̂F (z)}

)
3n (65)

=
(
f1

(
1/2
n

)
(−1)n +O(n−2)

)
3n. (66)

Having f1 and d1 computed in theorem 20 and by lemma 7 we get:

Dn

Fn
=

(
d1

(
1/2
n

)
(−1)n +O(n−2)

)
3n(

f1

(
1/2
n

)
(−1)n +O(n−2)

)
3n

=
d1

f1
(1 + o(1)) ≈ 0.4232... (67)

After simplification we get:

d1

f1
=

1(
4
√

13
) +

1(
4
√

17
) + (68)

+
1

2
√

2
(√

221− 9
) +

15

2
√

442
(√

221− 9
)

This concludes the proof. The numerical value of d1
f1

is 0.423238538401941... �

Using the same method we can find the densities of the classes A,B and C.
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Theorem 22 [Distribution of densities]

lim
n→∞

An

Fn
= − 1

4
√

13
− 1

4
√

17
+

1

2
√

2
(√

221− 9
)

+
15

2
√

442
(√

221− 9
) ≈ 0.1632 . . . (69)

lim
n→∞

Bn

Fn
=

1
2

+
1

4
√

13
− 1

4
√

17
− 1

2
√

2
(√

221− 9
)

− 15

2
√

442
(√

221− 9
) ≈ 0.2154 . . . (70)

lim
n→∞

Cn

Fn
=

1
2
− 1

4
√

13
+

1
4
√

17
− 1

2
√

2
(√

221− 9
)

− 15

2
√

442
(√

221− 9
) ≈ 0.1980 . . . (71)

lim
n→∞

Dn

Fn
=

1(
4
√

13
) +

1(
4
√

17
) +

1

2
√

2
(√

221− 9
)

+
15

2
√

442
(√

221− 9
) ≈ 0.4232 . . . (72)

Notice the lack of symmetry between classes B and C.

7 Implicational fragment F→ of F

In this section we want to find the asymptotic density of the implicational
fragment of the propositional calculus of one variable. Let us define F→ to be
the set of formulas with one propositional variable and with implication only.
In compliance with the convention of definition 2 we define F→n = F→ ∩ Fn.

Definition 23 The number F→n is given by the recurrence:

F→0 = 0, F→1 = 0, F→2 = 1 (73)

F→n =
n−1∑
i=1

F→i F→n−i (74)

Lemma 24 The number of formulas from the class F→ of length n− 1 is F→n .
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Proof. The proof is straightforward. �

Lemma 25 The generating function fF→ for the numbers F→n is

fF→(x) =
1
2
−
√

1− 4x2

2
(75)

Proof. The recurrence F→n =
∑n−2

i=1 F
→
i F→n−i becomes the equality

fF→(x) = f2
F→(x) + x2 (76)

The calculation of the solution is straightforward. �

As previously we will calibrate the function fF→ in order to satisfy the second
simplified version of the Szegö lemma 6.

Definition 26

f̂F→(x) := fF→(x/2). (77)

After simplification of the formula (75) we get:

f̂F→(x) =
1
2
−
√

1− x2

2
(78)

Note that [xn]{fF→(x)} =
(
[xn]{f̂F→(x)}

)
2n. Now we will find two expansions

of f̂F→ into power series in the vicinity of x = 1 and x = −1. By the second
simplified version of Szegö Lemma 6 we are particularly interested in the first
terms of those expansions. Expansions are of the form:

f̂F→(x) = v
(1)
0 + v

(1)
1

√
1− x+ . . .

f̂F→(x) = v
(−1)
0 + v

(−1)
1

√
1 + x+ . . .

Therefore

F→n =
((

v
(1)
1 + v

(−1)
1

)( 1/2
n

)
((−1)n + 1) +O(n−2)

)
2n. (79)

Theorem 27 Implicational fragment F→ has asymptotic density 0 in F .
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Proof. By ( 79) and (66) we get:

F→n
Fn

=

((
v
(1)
1 + v

(−1)
1

)( 1/2
n

)
((−1)n + 1) +O(n−2)

)
2n(

f1

(
1/2
n

)
(−1)n +O(n−2)

)
3n

, (80)

which for even n is of the order (see the lemma 7 for the order of(
1/2
n

)
(−1)n+1 )

(
v
(1)
1 + v

(−1)
1

f1
(1 + o(1))

)(
2
3

)n

while for odd n it is O(n−2). So altogether limn→∞
F→n
Fn

= 0.

We can also present an elementary (without Szegö lemma 6) proof of this theo-
rem. The numbers F→n are the terms of the Catalan sequence for even n, while
for odd n F→n = 0. Since the rate of growth of Catalan numbers is as 4nn−3/2,
we get the following:

F→n = O

(
4

n
2

(n
2

)−3/2
)

= O
(
2nn−3/2

)
for even n. And the result is immediate. �

Let D→n mean the number of implicational tautologies of size n. In compliance
with the convention of definition 2 we define D→n = F→ ∩ Dn.

Theorem 28 The set of implicational tautologies has asymptotic density 0 in
the set of all tautologies.

Proof. This is the consequence of theorem 27 and the main theorem 21. The
limit limn→∞

D→
n

Fn
exists and is equal to 0 sinceD→n ≤ F→n for every n. Therefore

0 ≤ D→
n

Fn
≤ F→

n

Fn
. We already calculated in theorem 21 limit limn→∞

Dn

Fn
=

0.4232.... Therefore

lim
n→∞

D→n
Dn

=
limn→∞

(
D→

n

Fn

)
limn→∞

(
Dn

Fn

) ≤
limn→∞

(
F→

n

Fn

)
0.4232...

=
0

0.4232...
= 0.

�
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8 Tautologies in F are less dense than in F→

In this section we are going to compare the density of the set of tautologies
in the systems F and F→. This will answer the question ”to what extent the
introduction of negation influences the density of tautologies in the propositional
calculus of one variable.”

In theorem 27 we proved that the numbers F→n are the terms of the Catalan
sequence for even n while F→n = 0 for odd n. So D→n = 0 for odd n. Therefore
we are going to count the number of tautologies in F→ for even n only. The
plan is to prove the existence and the exact value of limn→∞

D→
2n

F→2n
.

We start by defining the other length measure for implicational formulas from
F→. Then we are going to prove that both measures are equivalent meaning
that the asymptotic results for any class of formulas are identical.

By the new length measure ‖φ‖ for formulas from F→ we mean the number of
occurrences of the atomic formula a.

‖a‖ = 1 (81)
‖φ→ ψ‖ = ‖φ‖+ ‖ψ‖ (82)

Lemma 29 For every formula φ from F→ |φ| = 2‖φ‖ − 1.

Proof. By simple induction on the structure of φ. �

Definition 30 By F(n) we mean the set of formulas φ such that ‖φ‖ = n− 1.

Definition 31 The number F(n) is given by the recurrence:

F(0) = 0, F(1) = 0, F(2) = 1, (83)

F(n) =
n−2∑
i=1

F(i+1)F(n−i). (84)

Lemma 32 The number of formulas φ such that ‖φ‖ = n − 1 is F(n). So
F(n) = #F(n).

Proof. The proof is straightforward.

�
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Lemma 33 The generating function f(F ) for the numbers F(n) is

f(F )(x) = x

(
1
2
−
√

1− 4x
2

)
(85)

Proof. The proof is by solving equation f(F )(x) = (f(F )(x))2

x + x2 which
describes the recurrences (84) and (83). �

Definition 34 In compliance with the convention of definition 2 we define
A→ = F→ ∩ A, B→ = F→ ∩ B, C→ = F→ ∩ C and D→ = F→ ∩ D. It is
easy to observe that A→ = C→ = ∅. By B→(n) and D→(n) we denote the numbers
of formulas respectively in classes B→ and D→ of the new length ‖.‖ equal to
n− 1. Since the definition of lengths |.| and ‖.‖ are different (see the definition
in section 7), remember to distinguish between numbers B→n , D→n and B→(n),
D→(n).

Now our implication ⇒ defined on classes (see 1) can be reduced to the following
2× 2 truth table.

⇒ B→ D→

B→ D→ D→
D→ B→ D→

Theorem 35 The numbers B→(n) and D→(n) are given by the mutual recursion:

B→(0) = 0, B→(1) = 0, B→(2) = 1 (86)
D→(0) = 0, D→(1) = 0, D→(2) = 0 (87)

B→(n) =
n−1∑
i=1

B→(i)D
→
(n−i) (88)

D→(n) = F(n) −B→(n) (89)

Proof. For n ≥ 3 a formula from B→(n) is an implication between a pair
of formulas of the lengths i and n − i respectively. The total number of such
formulas is

∑n−1
i=1 B

→
(i)D

→
(n−i) . �

Lemma 36 For every n ≥ 1 F→(n) = F→2n−2, D
→
(n) = D→2n−2 and B→(n) = B→2n−2

Proof. By a simple application of lemma 29. �
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Lemma 37 The generating functions f(B), f(D) for the numbers B→(n) and D→(n)

are

f(D)(x) = x

(
3
4
− 1

4
√

1− 4x− 1
4

√
2 + 2

√
1− 4x+ 12x

)
(90)

f(B)(x) = x

(
−1

4
− 1

4
√

1− 4x+
1
4

√
2 + 2

√
1− 4x+ 12x

)
(91)

Proof. The standard resolving of the recurrence above. �

Theorem 38 [The density of tautologies for F→ with the length measure ‖.‖ ]

lim
n→∞

D→(n)

F→(n)

=
1
2

+
√

5
10

(92)

Proof. Theorem 4.6 in [2] states that the limit of fractions of two sequences
identical with D→(n−1) and F→(n−1) is 1

2 +
√

5
10 .

Theorem 39 [Statman [4]] Implicational intuitionistic and classical logics of
one variable coincide.

Proof. We present the numerical proof of this well known logical fact. The
generating function for the number of tautologies in intuitionistic logic (see
lemma 7.4 in [2]) is identical with the generating function for the number of
tautologies in classical logics D→(n−1). Therefore the numbers of tautologies in
both logics are identical for all n. Since the set of tautologies of intuitionis-
tic logic is a subset of the set of tautologies in the classical one it proves the
statement. �

Theorem 40 The set of tautologies in F has smaller asymptotic density than
the asymptotic density of the set of implicational tautologies in F→.

Proof. Trivially follows from theorem 21. For the set F→ we can apply lemma
36 and theorem 38 to obtain

lim
n→∞

D→2n

F→2n

= lim
n→∞

D→(n+1)

F→(n+1)

= lim
n→∞

D→(n)

F→(n)

=
1
2

+
√

5
10

= 0.7236...
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