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Abstract. We consider propositional formulas built on implication. The
size of a formula is the number of occurrences of variables in it. We
assume that two formulas which differ only in the naming of variables are
identical. For every n € N, there is a finite number of different formulas
of size n. For every n we consider the proportion between the number of
intuitionistic tautologies of size n compared with the number of classical
tautologies of size n. We prove that the limit of that fraction is 1 when
n tends to inﬁnityE.

1 Introduction

In the present paper we consider propositional formulas built on implication only.
In particular we do not use logical constant 1. The size of a formula is the number
of occurrences of variables in it. We assume that two formulas which differs only
in the naming of variables are identical. For every n € N, there is finite number
of different formulas of size n, we denote that number by F(n). Consequently
there is also finite number of classical tautologies and of intuitionistic tautologies
of that size. These numbers are denoted by Cl(n) and Int(n) respectively. We

are going to prove that:
Int
lim 040

This work is a part of the research in which the asymptotic likelihood of
truth is estimated. We refer to Gardy [4] for a survey on probability distribution
on Boolean functions induced by random Boolean expressions. For the purely
implicational logic of one variable the exact value of the density of truth was
computed in the paper [II] of Moczurad, Tyszkiewicz and Zaionc. It is well
known that under Curry-Howard isomorphism this result answered the question
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of finding the “density” of inhabited types in the set of all types. The classical
logic of one variable and the two connectors — implication and negation — was
studied in Zaionc [I3]. Over the same language, the exact proportion between
intuitionistic and classical logics has been determined in Kostrzycka and Zaionc
[7]. Some variants involving formulas with other logical connectors have also been
considered. The case of and/or connectors received much attention — see Lefmann
and Savicky [§], Chauvin, Flajolet, Gardy and Gittenberger [I] and Gardy and
Woods [5]. Matecki [9] considered the case of the equivalence connector.

In the latest paper [6] of Fournier, Gardy, Genitrini and Zaionc, the proportion
between intuitionistic and classical logics when the overall number of variables
is finite was studied. In this paper, the methods (and moreover the partition of
formulas into several classes) developed in [6] are used in the different case, when
the number of variables is arbitrary and not fixed. But formally this paper and
[6] are incomparable in the sense that each one is not an extension of the other.

2 Basic Facts

2.1 Catalan Numbers

The n-th Catalan number is the number of binary trees with n internal nodes
or, equivalently, n+ 1 leaves. For our exposition it will be convenient to focus on
leaves, therefore we denote by C(n) the (n—1)-th Catalan number. Its (ordinary)
generating function is
1—+v1—-4z
c(z) = Cn)z" = ————.
()= ) :

neN

That function fulfills the following property
c(z) =c(2)e(z) + 2. (1)

The radius of convergence of ¢(z) is 1 and lim,_, 1c(z) = 1. We have also the

following property
Cn—-1) 1

lim ————-=-.

n—oo  C(n) 4
2.2 Algebraic Asymptotics

Lemma 1. Let f,g € Z[[z]] be two algebraic generating functions, having (as
complex analytic functions) unique dominating singularities in p € Ry. Suppose
that these functions have Puiseux expansions around p of the form

1

£(z) = es +ds(z — )2 +o((z — p)?2)

).

N=

9(2) = cg + dy(z — p)2 + o (2 — p)
Then
) f (2

/
lim ~—"" = lim f,(z).
e [7g(z)  oepe 9(2)
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By the singularity analysis for algebraic generating functions (see e.g. Theorem
8.12 from [2]) we obtain that:

L B dp
e [zlg(z)  dy

f'z) _ d
z—rp” g (2) 7 The
analogous argument can be derived from the Szegé Lemma (see [12]).

On the other hand it can be easily calculated that lim

2.3 Bell Numbers

The n-th Bell number, denoted by B(n), is the number of equivalence relations
which can be defined on some fixed set of size n. We use the following property,
which can be derived from the asymptotic formula for Bell numbers by Moser
and Wyman ([I0], see also [3]).

B(n—1) N elog(n)

B(n) n

2.4 Formulas

Implicational formulas can be represented by binary trees, suitably labeled: their
internal nodes are labeled by the connector — and their leaves by some variables.
By ||¢]| we mean the size of formula ¢ which we define to be the total number
of occurrences of propositional variables in the formula (or leaves in the tree
representation of the formula). Parentheses (which are sometimes necessary) and
the implication sign itself are not included in the size of expressions. Formally,

[zi]l =1 and [|¢ — ¥|| = [I¢ll + [[¥] .

We denote by F'(n) the number of implicational formulas of size n. Let T be
a formula (tree). It can be decomposed with respect to its right branch. Hence
it is of the form A; — (A2 — (... — (4, — r(T)))...) where »(T') is a variable.
We shall write it as
T=A4,... 4 —rT).

The formulas A; are called the premises of T and r(T), the rightmost leaf of the
tree, is called the goal of T'.

2.5 Counting up to Names

It is easy to observe, that the number of different formulas of size n is

C(n) corresponds to the shapes of formulas represented by trees, and B(n) to
all possible distributions of variables in that shape.
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3 Simple Tautologies

We follow notation from [11], [I4] and [6]. We are going to prove a theorem
analogous to the main theorem of [6].

Definition 1. G is the set of simple tautologies i.e. expressions that can be

written as
T:Al,...,Ap—w"(T),

where there exists i such that A; is a variable equal to r(T). We let (G(n))nen
be the sequence of the numbers of simple tautologies of size n.

It is easy to prove that simple tautologies are indeed intuitionistic tautologies.
The asymptotic equivalence of classical and intuitionistic logic is a direct conse-
quence of the following theorem.

Theorem 1. Asymptotically, all the classical tautologies are simple.

We are going to prove the theorem in three steps. First, we estimate the number
of simple tautologies. Then in two steps we show that the number of remaining
tautologies is asymptotically negligible.

Lemma 2. The fraction of simple tautologies among all formulas of size n is
. elog(n)
asymptotically equal to — .
Proof. First, we enumerate all the shapes of trees which can be labelled to be
simple tautologies. The set of such trees will be denoted by GT'. A tree belongs
to GT if and only if it has at least one premise which is a leaf. Let GT'(n,l)
denote the number of trees of size n, whose [ premises are leaves. We define bi-
variate generating function gt(z, z) = >, jem (o3 GT'(n, 1)z"x!. We use standard
unlabeled constructions (see [3]) to obtain the explicit expression for gt(z, z).
Clearly, for every tree t from GT there is a premise which is a leaf. The last such
premise decomposes uniquely the sequence of premises of ¢ into two sequences.
The first consists of arbitrary trees, while the second — of trees which are not
leaves. Note that c?(z) is the generating function for trees which are not leaves.
Corresponding constructions on generating function yields:

t(z, ) 1 : 2)
T,2) = ————— TZ+ ————— " 2.

g 1—c2(z) —xz 1—c2(2)

In the expression above the term m corresponds to the sequence of

trees which are either leaves (zz) or not (c?(z)). The second term xz corresponds
to the last premise that is a leaf. The third term %2(2) corresponds to the
remaining sequence of premises which are not leaves. The last occurrence of z
corresponds to the goal.

Let us fix I € N\ {0}. Let G;(n) denote the number of simple tautologies of
size n in which [ premises are leaves. ;From the inclusion-exclusion principle we

obtain

GT(n,1)-1-B(n—1) > Gi(n) > GT'(n,l)-1-B(n—1) fGT(n,l)l(l; 1)B(nf2).
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The first inequality comes from the fact that in every simple tautology there is at
least one premise which is equal to goal. Hence GT'(n, ) corresponds to the shape
of the tree, I corresponds to the possibilities of choice of the premise, B(n — 1)
corresponds to the all possible labeling of variables (n — 1 since one premise is
chosen to be equal to the goal). Of course, the formulas in which many premises
are equal to the goal are counted more than once. The second inequality comes
from subtracting all the formulas in which at least two premises are equal to the
goal (again some formulas are subtracted many times). We have

> GT(n,)-1-Bn—1)> >  Gin

1eN\{0} leN\{0}

I(i—1)
2

Yo G > Y] (GT(n,l)-l-B(n—l)—GT(n,l) B(n—2))

leN\{0} leN\{0}
therefore for every n € N

Yiem oy GT(n, 1) - 1- B(n —1) - > tem foy Gi(n)

and

e oy Gi(n) N ey (GT(n, 1) -1- B(n — 1) — GT(n, z)@B(n —2))
@
We are going to find a succinct formula for the generating function gt(z) =

2onen 2" 2iem oy L GT'(n, 1). Taking the derivative of the function gt(z, 2) with
respect to x we obtain the generating function of the sequence

gt (x,z) = Z GT(n,l)-1-z'712".
n,leN\{0}

It remains to substitute 1 for z to obtain the sought generating function. We
can write that function explicitly by applying those operations to the explicit
formula for gt(z, z). We obtain:

7160 = (1) =

the last equality results from (Il). We encourage the reader to find a direct
interpretation in terms of trees of the obtained expression for g#(z).

By differentiating gt(x, z) twice with respect to z, substituting 1 for x and
multiplying by 1, we analogously obtain the generating function:

gi(z) = Z 2" Z GT(n,l)la;l)

neN\{0} 1eN\{0}
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Hence .
gt(2) = gty (1, 2) = c(z)(c(2) — 2).

Both generating functions gi(z) and gi(z) are algebraic generating functions
with unique dominating singularities in i. Hence by the Lemma [T}

) e
n11—>120 [2™]c(z) _z_l,mif d(2) !
and o _,
L) e 3
n—oo [2Mc(z)  Lo,1- d(z2) 4
Therefore
2enGT(n,1)-1-B(n —1) _ ([z"]gt(2)) B(n — 1) N elog(n)
C(n)B(n) C(n) B(n) n
and

e GT( DU B —2)  (12"gi(z)) Bn—2) 3 (elog(n) ) ?
C(n)B(n) C(n) B(n) 8

Finally from (B and () we obtain

G(n)  denGi(n) N elog(n)
F(n)  F(n) n (5)

O

It remains to estimate the number of tautologies which are not simple. Those
have to be found among formulas which are neither simple tautologies nor simple
nontautologies (a formula 7 is simple nontautology if the goal of T' does not occur
as a goal of any premise of T'). That means that in every such formula T" there is
at least one premise which is not a variable, and whose goal is equal to the goal
of T'. First we will show that the number of formulas Aq,..., Ay — z in which
x is a goal of at least two premises is negligible, the set of such formulas will be
denoted by M P and the number of such formulas of size n by M P(n).

Lemma 3. The fraction of formulas A, ..., A — x in which x is a goal of at
. . . elog(n)

least two premises among all formulas of size n is o(=—=).

Proof. Let P(n,l) denote the number of trees of size n in which [ premises are

not leaves. Let p(z,z) =Y P(n,l)z"2! be its generating function. From the

n,leN
equation () we know that

G g T s
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That equation can be interpreted in terms of combinatorial constructions. Every
tree is a sequence of premises, followed by the goal. That translates to the ex-
pression ¢(z) = #(Z) -z. Every tree is either a leaf or it consists of two subtrees,

therefore we can substitute ¢?(z) + z for ¢(z) in the last equation. We add a for-
mal parameter = for every premise which is not a leaf to obtain the generating

function p(z, 2):
(z,2) = A
P 1—xzc2(z) — 2
Every formula T" € M P has two premises with the goal equal to the goal of
T, and those premises are not leaves. Therefore

(-1
MP(n)<B(n—-2) Y P(n,) Und))
leN\{0}
Note that
(1-1) A(2) c’(2)
2"y P(n,l) = 1pl(1,2) = =
7% lGZN 2 2 (1—¢(2))? 22

Hence a
[2"] (1_£c((zz)))2 (67(;) ) 7
lim ————= = lim z = -
e T le() | e @) 4

It follows that
MP(n) _ B(n—2) Sy, P0.)"52 7 <610g(n>)2

n

F(n) — C(n)B(n) !

and comparing to (@), formulas from M P are negligible. a

Finally, we estimate the number of tautologies which have exactly one premise
with goal equal to the goal of the whole formula (compare the part about less
simple non-tautologies in [6]).

Let T be such a formula, and C' be that premise. Let D be the first premise
of C (C is not a variable), and (D) be the goal of D (see Figure ().

A necessary condition for the formula T to be a tautology is that either r(D)
is a goal of at least one premise of T or D, or r(T') is a goal of some premises of
D. We estimate the number of such formulas. Let LT be the set of formulas T’
for which both of the following conditions hold:

1. T has exactly one premise C' whose goal is 7(T'), and that premise is not a
variable (this implies that 7" is not a simple tautology nor a simple nontau-
tology).

2. Let D be the first premise of C. At least one of the following conditions
holds:

(a) there is a premise of D with goal r(T),
(b) there is a premise of D with goal r(D),
(¢) (D) # r(T) and there is a premise of T with goal r(D).
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Fig. 1. Tautologies from LT

Lemma 4. The fraction of tautologies which are not simple among all formulas

. . 1
of size n is 0 (M>
n

Proof. Clearly all the tautologies, which are not simple and not in M P, belong to
LT. Let LT (n) denote the number of formulas from LT of size n. Since M P(n)

iso (%) it is enough to prove the estimation for LT (n).

Let LTT(n,m,l, k) denote the number of trees of size n which have [ + 1
premises, and in which the first premise of the m-th premise has exactly k
premises. Let LTT(n,l,k) = > .y LTT(n,m,l k). Every such tree can be
turned into formula from LT by the appropriate assignment of variables, and
every formula from LT can be constructed in this way. Therefore

LT(n)< Y (I+k) - LTT(n,l,k)- B(n—2)+ Y _ k- LTT(n,l,k)- B(n - 2)
I,keN 1,keN

The first sum corresponds to the situation, where (D) occurs as a goal in some
premises of D or T'. The second one — to the the situation, where 7(T") occurs as
a goal of some premises of D (these situations are not disjoint). Clearly

LT(n) <2 Y (I+k)- LTT(n,1,k)- B(n—2).
I,keN

Let Itt(x,y,2) = 32 1 nen zlyk 2" LTT(n,1, k). We have

1 z 1
T 1-zc(z) 1-yc(?) el2) 1 —zc(z) -

ltt(z,y, z)

The first term ﬁc(z) corresponds to the sequence of premises preceding the

distinguished premise C'. The component —= ©) -¢(z) corresponds to the premise

1—yc(z
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C' (formal parameter y counts the premises of the subtree corresponding to D).
The last component #C(Z) - z corresponds to the remaining premises of the
main tree and the leaf (goal).

Let ltt(x, 2) = ltt(x, @, 2), then ltt(z,2) = 3 4 ey R LTT(n, 1, k), and
It (1,2) =32 pnen 2" (L+K)LTT(n, 1, k). We denote the last function by ltt(z),

it is the generating function for the sequence which majorizes (%)HGN. We
can write it explicitly as

3c(2)
ltt(z) = o
Then we have
6 38 (2 !
_ LTT(n) [27) 22 (2) _ ( = )) 18
lim = li 2 — = lim = =9
Oy i Ty L) 2
Therefore
LT (n) < 2LTT(n)B(n —2) 18B(n -2) 18 elog(n)\”
F(n) — B(n)C(n) B(n) n

The Theorem [is a direct consequence of Lemmas 21314l

4 Discussion

Actually, in this paper much more is proved. The result obtained is not related
only to intuitionistic tautologies, but it holds also in any logic which is able to
prove simple tautologies. Indeed, all formulas of the form of simple tautologies
are tautologies of every reasonable logic with this syntax. Therefore results com-
paring densities of any logic between minimal and classical one are the same. So
the theorem proved may be applied as well to minimal, intuitionistic, and any
intermediate logic. It shows, in fact, that a randomly chosen theorem has a proof
which is a projection and statistically all true statements are the trivial ones.

In the paper only implicational fragment is taken in to consideration. Right
now we do not know the analogous result for more complex syntax. But based
on our experience we believe that the similar theorems holds for more com-
plex syntaxes, including full propositional logic. At the moment, these are just
expectations, but certainly it is worth to look in this direction.

Despite of the fact that all discussed problems and methods are solved by
mathematical means, the paper, as was suggested by referees may have some
philosophical interpretation and impact. However, the paper is purely technical
and we are not ready to comment on these philosophical issues.

Acknowledgements. We are very grateful to all three anonymous referees who
suggested many improvements to the presentation of our paper.
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