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Abstract

It has been proved by Loader [3] that Statman-Plotkin conjecture (see [7] and [5])
fails. The Loader proof was done by encoding the word problem in the full type
hierarchy based on the domain with 7 elements. The aim of this paper is to show that
the lambda definability problem limited to regular fourth order types is decidable in
any finite domain. Obviously λ definability is decidable for 1, 2 and 3 order types.
As an additional effect of the result described we may observe that for certain types
there is no finite context free grammar generating all closed terms. We prove also
that probability that randomly chosen fourth order type (or type of the order not
grater then 4 ) admits decidable lambda definability problem is zero.

1 Syntax of simple typed lambda calculus

We shall consider a simple typed lambda calculus with a single ground type
O. The set T of types is defined as follows: O is a type and if τ and
µ are types then τ → µ is a type. We will use the following notation:

if µ, τ1, τ2, ..., τn are types then by τ1 → τ2 → ... → τn → µ we mean the
type τ1 → (τ2 → ... → (τn → µ)...). Therefore, every type τ has the
form τ1 → ... → τn → O. By a τ k → µ we mean the type τ... → τ →
O with k occurrences of type τ (with τ 0 → µ = µ). If τ has the form
τ1 → ... → τn → O, then τi for i ≤ n are called components of type τ
and are denoted by τ [i]. For any type τ we define rank(τ) and arg(τ) as

follows: arg(O) = 0, rank(O) = 1 and arg(τ1 → ... → τn → O) = n and
rank(τ1 → ... → τn → O) = maxi=1...n rank(τ [i]) + 1. We define inductively
types τ [i1, ..., ik] by (τ [i1, ..., ik−1])[ik] for 1 ≤ ik ≤ arg(τ [i1, ..., ik−1]).

1 Supported by the State Committee for Scientific Research in Poland (KBN), research
grant 7T11C 022 21
2 Email: zaionc@ii.uj.edu.pl

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Zaionc

Definition 1.1 Type τ is called regular if rank(τ) ≤ 4 and every component
of τ has arg ≤ 1. This implies that only components allowed for regular types
are O, O → O and (Ok → O) → O for any k.

For any type τ there is given a denumerable set of variables V (τ). Any type
τ variable is a type τ term . If T is a term having type τ → µ and S is a type
τ term , then TS is a term which has type µ. If T is a type µ term and x is
a type τ variable , then λx.T is a term having type τ → µ. The axioms of
equality between terms have the form of βη conversions and the convertible
terms will be written as T =βη S. Term T is in a long normal form if T =
λx1...xn.yT1...Tk, where y is an xi for some i ≤ n or y is a free variable, Tj for
j ≤ k are in a long normal form and yT1...Tk is a type O term. Long normal
forms exist and are unique for βη conversions (compare [6]). A closed term is a
term without free variables. By Cl(τ) we mean a set of all closed type τ terms.
Let Y be a set of typed variables. By Cl(τ, Y ) we mean a set of all type τ terms
such that any free variable of such terms is in Y . Let us introduce a complexity
measure π for closed terms. If T is a closed term written in a long normal
form and T = λx1...xn.xi then π(T ) = 1. If T = λx1...xn.xiT1...Tk, then
π(T ) = maxj=1...k(π(λx1...xn.Tj)) + 1. Complexity π is just the depth of the
Böhm tree of a given term. If y1, ..., yn are some occurrences of free variables
in term T then T [y1/t1, ..., yk/tk] is a term obtained from T by replacement of
each yi be a term ti respectively. For more detailed treatment of typed lambda
calculus see [8].

2 Model of simple typed lambda calculus

A full type hierarchy {Dτ}τ∈T is a collection of finite domains, one for each
type. The whole hierarchy is determined by DO. We assume that the set DO

is a given finite set and Dτ→µ is a collection of all functions from Dτ to Dµ.
Therefore all Dτ are finite. Since any function f ∈ Dτ→µ is a finite set, we
assume some sensible encoding of those functions as Gödel numbers for their
graphs. An assignment φ is a function associating an object from one of the
domains with each variable of typed lambda calculus in such a way that the
type τ variable is assigned an element from the domain Dτ . Any assignment
φ can be extended to an interpretation V φ of all terms in full type hierarchy.
A function V φ is defined by:

(i) V φ(x) = φ(x)

(ii) V φ(TS) = V φ(T )(V φ(S))

(iii) V φ(λxτ .Tµ) is such a function from Dτ to Dµ that for each element X ∈
Dτ the value of this function is V ψ(T ), where ψ, is an assignment which
is identical to φ except that ψ(x) = X

It can be noted that any type τ term is interpreted as an objects from Dτ .
It is also easy to notice that interpretation V φ on term T depends only on
the assignment φ on free variables in T . Hence, closed terms have a fixed
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interpretation in the full type hierarchy. Function f ∈ Dτ is called lambda
definable if there is a closed type τ term T that is interpreted as f .

The lambda definability problem is a decision problem to determine whether
or not the given object f ∈

⋃
τ∈TDτ is lambda definable. It was proved by

Loader that the problem is undecidable. For the particular type τ the τ -
lambda definability problem is the decision problem to determine whether or
not the given object f ∈ Dτ is lambda definable. In this case the type τ is
not a part of the problem.

Definition 2.1 A function α : Dτ
n → Dτ is called λ preserving function if

the following implication holds: if x1, ..., xn are lambda definable objects in Dτ

then α(x1, ..., xn) is also a lambda definable object in Dτ .

Definition 2.2 We call {a1, ..., ap, α1, ..., αk} a λ system in Dτ if a1, ..., ap
are some λ definable objects in Dτ and α1, ..., αk are some λ preserving
functions in Dτ of various arities.

Definition 2.3 By the closure of the λ system {a1, ..., ap, α1, ..., αk} in Dτ

we mean the minimal set of objects in the domain Dτ containing elements
a1, ..., ap and closed for all functions α1, ..., αk. Obviously all objects in the
closure are λ definable functions. The λ system {a1, ..., ap, α1, ..., αk} in Dτ

is called λ complete if the closure of the system consists of all λ definable
objects in Dτ .

Lemma 2.4 For λ system L = {a1, ..., ap, α1, ..., αk} the closure is effectively
constructible.

Proof. We are going to construct the closure just by iteration of λ preserving
functions. Let us define recursively sets D0

L, D
1
L, ... by

(i) D0
L = {a1, ..., ap}

(ii) Di+1
L = Di

L ∪
⋃

1≤j≤k{αj(x1, ..., xpj
) : x1, ..., xpj

∈ Di
L}

We are having a monotonic chain of sets of λ definable objects in Dτ . D
0
L ⊆

D1
L ⊆ ... ⊆ Dτ . Since Dτ is finite, then there will be an index i0 such that

Di0
L = Di0+1

L . Obviously Di0
L is a closure of the system L. In the case when

the system is complete, the closure Di0
L consists of all λ definable objects in

Dτ . 2

3 Term grammars

Term grammars have been introduced in [9]. A more detailed treatment of
term grammars can be found in [8] or [10]. A term grammar G is a triple
(V, P, S) where V is a finite set of nonterminals, each of which is a typed
variable, P is a finite set of productions, each of which is a pair (y, t) denoted
also as y → t, where y ∈ V and t ∈ Cl(τ, V ), where τ is a common type
for y and t. S is a special nonterminal symbol from V . A closed term T is
obtained from closed terms t1 ∈ τ1, ..., tk ∈ τk by production y → t if there is
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exactly k occurrences of nonterminal variables y1, ..., yk in t which have types
τ1, ..., τk respectively, such that T =βη t[y1/t1, ..., yk/tk]. By a derivation of
the closed term T we mean a finite sequence of closed terms t0, t1, ..., tn = T ,
such that for every term ti in the sequence either there is production y → ti
in grammar G ( which means that ti is a closed term ) or ti is obtained from

previous terms in the sequence by some production. Let us write y
∗→ T to

denote that T is obtained from some closed terms t1, ..., tk derivable in G by
production y → t. By L(G, y) where y ∈ V we mean the set of all closed
terms which are generated from y by grammar G, i.e. if y is type τ variable
then L(G, y) = {t ∈ Cl(τ) : y

∗→ t}. Let us assume that y → t is production
and y1, ..., yn are all free occurrences of nonterminal variables in the term t.
Let y ∈ τ , y1 ∈ τ1 , ..., yn ∈ τn. This production determines the function
α : Cl(τ1) × ... × Cl(τn) → Cl(τ) defined by: α(t1, ..., tn) = t[y1/t1, ..., yk/tk]
for every closed terms t1 ∈ Cl(τ1), ..., tn ∈ Cl(τn). If there are no nonterminal
variables in the term t, then the production y → t determines a 0-ary function
(constant) t which belongs to Cl(τ).

Example 3.1 Let τ be a following type ((O → O → O) → O) → (O → O).
Let us consider the following grammar ({y}, P, y). Types of auxiliary variables
used are the following p ∈ (O,O → O) → O and x, v, z ∈ O. There are 4
productions in the set P .

(i) y → λpx.x

(ii) y → λpx.p(λvz.ypx)

(iii) y → λpx.p(λvz.ypv)

(iv) y → λpx.p(λvz.ypz)

Let α, β, γ, δ be the functions determined by these productions respectively.
The closed term λpx1.p(λx2x3.p(λx4x5.p(λx6x7.x4))) of type τ has the follow-
ing derivation sequence

(i) λpx.x

(ii) λpx.p(λvz.x)

(iii) λpx.p(λvz.p(λx6x7.v)

(iv) λpx1.p(λx2x3.p(λx4x5.p(λx6x7.x4)))

or the term can be presented as β(γ(β(α))). It is easy to prove that this
grammar generates all closed terms of type τ (compare [9] or theorem 3.3).

Theorem 3.2 For every type rank 3 type τ there is a finite grammar with
one type τ nonterminal variable which generates all closed type τ terms.

Proof. Let τ = τ [1], τ [2], ..., τ [n] → O. It will be proved that the following
grammar ({y}, P, y) produces all closed type τ terms. The grammar contains
exactly n productions which have the form:

(i) y → λx1...xn.xi if arg(τ [i]) = 0
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(ii) y → λx1...xn.xi(yx1...xn)...(yx1...xn) if arg(τ [i]) = k > 0

It is easy to see that any term produced by the grammar has the type τ .
The reverse implication is by induction of the complexity π of closed terms.
Let us suppose that T is a closed type τ term in a long normal form . If T
is a projection λx1...xn.xi, then obviously it can be obtained directly by i-th
production. Suppose T has a long normal form λx1...xn.xiK1...Kk for some
τ [i] such that arg(τ [i]) = k where Kj are type O terms. Let us define T1, ..., Tk
by Tj = λx1...xn.Kj. Each term Tj is a closed type τ term and is simpler with
respect to complexity π then the original term T . Therefore by induction
closed terms T1, ..., Tk are to be generated by the grammar G. The term T
can be obtained from T1, ..., Tk by production (ii). 2

Theorem 3.3 [see Zaionc [9]] For every regular rank 4 type, such that there
is i ≤ arg(τ) such τ [i] = O, there is a finite grammar with one nonterminal
variable generating all closed type τ terms. An illustration of this case is
presented in the example 3.1

Proof. Let τ = τ [1], τ [2], ..., τ [n] → O. Every τ [i] is one of the following
types: O, O → O or (O, ..., O → O) → O. Let us assume that τ [r] = O for
some r ≤ n. We will prove that the following grammar ({y}, P, y) produces
all closed type τ term. The grammar contains productions, one for each type
O and type O → O components and 1+arg(τ [i]) productions for each second
order component τ [i] = (O, ..., O → O) → O. The productions have the form:

pi y → λx1...xn.xi if τ [i]) = O

qi y → λx1...xn.xi(yx1...xn) if τ [i] = O → O

li y → λx1...xn.xi(λz1...zp.yx1...xn) if τ [i] = (Op → O) → O

lri,1 y → λx1...xn.xi(λz1...zp.yx1...xr−1z1xr+1...xn) if τ [i] = (Op → O) → O

.

.

.

lri,arg(τ [i]) y → λx1...xn.xi(λz1...zp.yx1...xr−1zpxr+1...xn) if τ [i] = (Op → O) → O

We can see that for any term λx1...xn.T in a long normal form where T ∈
Cl(O, {x1...xn}) which has a regular type τ , there is at the most one occurrence
of type O variable among all x1...xn which occurs free in T . We are going to
prove that every closed type τ term can be obtained by the grammar. Let
λx1...xn.T be a closed type τ term.

(case 1) If T = xi for some type O variable xi then λx1...xn.T can be
obtained by production pi.

5



Zaionc

(case 2) If T has the form xiS for some term S ∈ Cl(O, {x1...xn}) where
xi has type O → O, then the term λx1...xn.S has also type τ
and is simpler than λx1...xn.T with respect to the complexity
measure π. Therefore by induction λx1...xn.S can be obtained
by the grammar. Hence our term λx1...xn.T can be obtained by
production qi from λx1...xn.S.

(case 3) If T has the form xi(λz1...zp.S) for some term S ∈
Cl(O, {x1...xn, z1...zp}) where xi has type (Op → O) → O
then λx1...xnz1...zp.S is the closed term with regular type
τ [1], τ [2], ..., τ [n], Op → O. According to what we note there
is at the most one occurrence of one type O variable among
x1...xn, z1...zp which occurs free in S.

(case 3a) If the only type O variable which occurs free in S is xs for some
s ≤ n, then λx1...xn.S is a closed type τ term and is simpler
than T with respect to the complexity measure π. Therefore by
induction λx1...xn.S can be obtained by the grammar. Hence our
term λx1...xn.T can be obtained by production li from λx1...xn.S.

(case 3b) If the only type O variable which occurs free in S is zs for some
1 ≤ s ≤ p, then λx1...xrzsxr+1...xn.S is closed type τ term and is
simpler then T with respect to the complexity measure π. There-
fore by induction λx1...xrzsxr+1...xn.S can be obtained by the
grammar. Hence our term λx1...xn.T can be obtained by produc-
tion lri,s from the term λx1...xrzsxr+1...xn.S.

2

Theorem 3.4 [see Zaionc [9]] For every regular rank 4 type, such that there
is no such i ≤ arg(τ) that τ [i] = O, there is a finite grammar with two
nonterminal variables generating all type τ closed terms.

Proof. Let τ = τ1, . . . , τn → O. Let us define τ ′ = τ1, . . . , τn, O → O. The
new type τ ′ satisfies the assumption of theorem 3.3, therefore there exists a
grammar with one nonterminal type τ ′ variable y′, generating all closed terms
of τ ′. Let us add to the existing grammar the following additional productions:

y → λx1...xn.xi(yx1...xn) if τ [i] = O → O

y → λx1...xn.xi(λz1...zp.y
′x1...xn, z1) if τ [i] = (Op → O) → O

.

.

.

y → λx1...xn.xi(λz1...zp.y
′x1...xn, zp) if τ [i] = (Op → O) → O

The starting symbol for the new grammar is y. The proof of correctness of
this construction is similar to the proof of theorem 3.3. 2
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4 Main result

Theorem 4.1 Suppose there is a grammar with exactly one nonterminal, type
τ variable y , generating all closed type τ terms. Then there exists effectively
a complete λ system in Dτ for any full type hierarchy.

Proof. Let {Dτ}τ∈T be a full type hierarchy built up from some finite set
DO. First we identify all productions y → t such that there is no nonterminal
variable in t. For each such production p : y → t, term t is a closed type τ
term. Let us evaluate t in the full type hierarchy to find an object ap ∈ Dτ .
Then let us identify all productions p : y → t[y, ...y] such that there are some
k > 0 occurrences of nonterminal variable y in t. For each such production
we will define a function αp : Dτ

k → Dτ . Let p : y → t[y, ...y] be a production
with exactly k > 0 occurrences of nonterminal variable y in t[y, ..., y]. Let
t1, ..., tk be given objects from Dτ . Let us define the term t[y1, ..., yk] obtained
by replacement of each occurrence of the free variable y by the new type τ
variables y1, ..., yk respectively. Now let us define αp(t1, ..., tk) as an object
V φ(t[y1, ..., yk]) from Dτ where φ is an assignment associating yi with ti for
all i ≤ k. Therefore we have defined the function αp : Dτ

k → Dτ . All such
functions and such objects form the λ system in Dτ . We need to prove that
such λ system is complete. Suppose an object a ∈ Dτ is λ definable. We
are going to show that a belongs to the closure of the just constructed λ
system. There is a closed λ term Ta interpreted as a. Term Ta has a finite
derivation in the grammar G. If the length of the derivation is 1, it means
that Ta is obtained from production y → Ta. In this case interpretation of Ta
is an a ∈ Dτ which belongs to the λ system. In the case the length of the
derivation for Ta is longer than 1, Ta is obtained from some previous terms
in the derivation sequence, let us say from R1, ..., Rk, by some production
p : y → t from the grammar. Let αp be a function αp : Dτ

k → Dτ associated
with the production p : y → t. Let b1, ..., bk be interpretations of closed terms
R1, ..., Rk in Dτ . By induction we assume that b1, ..., bk belong already to the
closure of the λ system. From the construction of the λ system it follows
that a = fp(b1, ..., bk). So a ∈ Dτ also belongs to the closure. 2

Theorem 4.2 For any rank 3 type τ or for any regular rank 4 τ for which
there is i ≤ arg(τ) such that τ [i] = O the λ definability problem is decidable
in full type hierarchy built up from any finite set DO.

Proof. Given is an object f ∈ Dτ . For type τ there is effectively a finite
grammar with exactly one nonterminal variable generating all closed type τ
terms . The following procedure applies. First we find the grammar ( theorem
3.2 , 3.3 ) which generates all closed type τ terms . Then having the grammar
we construct the λ system using procedure described in theorem 4.1. The
λ system formed from such grammar must be complete ( theorem 4.1 ).

Finally, we find the closure of this system (lemma 2.4) which consists of all
λ definable objects in Dτ . Then we check whether or not the given function
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f ∈ Dτ belongs to this closure. 2

Theorem 4.3 Let τ be a regular rank 4 type such that there is no such i ≤
arg(τ) that τ [i] = O. The λ definability problem for τ is decidable in full type
hierarchy built up from any finite set DO.

Proof. Given is an object f ∈ Dτ . Suppose τ = τ [1], ..., τ [n] → O. Let us
define a new type τ ′ as τ [1], ..., τ [n], O → O. Type τ ′ satisfies assumptions of
theorem 3.3 and therefore there is a finite grammar with exactly one nonter-
minal variable y′ generating all closed type τ ′ terms. Using theorem 4.2 we
construct effectively the finite set Dλ

τ ′ of all λ definable objects in Dτ ′ . To
generate closed type τ terms we add additional productions

(1) y → λx1...xn.xi(yx1...xn) if τ [i] = O → O

(2.1) y → λx1...xn.xi(λz1...zp.y
′x1...xn, z1) if τ [i] = (Op → O) → O

.

.

.

(2.p) y → λx1...xn.xi(λz1...zp.y
′x1...xn, zp) if τ [i] = (O, ..., O → O) → O

Any type (1) production defines the unary function α : Dτ → Dτ in the
usual way (see theorem 4.1). Productions 2.1 - 2.p define p unary functions
β1 : D′

τ → Dτ , ..., βp : D′
τ → Dτ . The following procedure applies. First find

the image I of Dλ
τ ′ by all functions β1, ..., βp.

I =
⋃

1≤i≤p βi(D
λ
τ ′)

Then let us find the closure of the set I in Dτ with respect to all functions
α (see lemma 2.4 ). This closure is a set of all λ definable functions in Dτ .
Finally, we check whether the given function f ∈ Dτ belongs to this closure.
The proof of correctness of this procedure is identical with the proof of theorem
4.2. 2

Theorem 4.4 λ definability problem is decidable for all rank 1, 2, 3 types
and for regular rank 4 types.

Proof. For the rank 3 and regular rank 4 types see theorems 4.2 and 4.3. For
the type O of rank 0 the λ definability problem is trivial since there is no λ
definable objects in DO. For rank 2 types the problem is decidable since for
such types there are only finite number of closed terms. 2

Theorem 4.5 λ definability problem is undecidable for any non regular rank
4 type.

Proof. Proof is based on the observation that the type L = ((O → O) →
O) → ((O → (O → O) → O) is the simplest non regular type of rank 4.
Therefore by simple lambda definable coding L can be embedded to any non
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regular type of rank 4. But the λ definability problem is undecidable for L
(see [1]) . 2

Example 4.6 Let us consider the full type hierarchy built from the set DO =
{0, 1}. The problem is to find all λ definable elements in the set Dτ for type
τ of Church’s numerals (O → O) → (O → O). Let us name 4 elements of the
set DO→O respectively by a, b, c and d, where those are given by the following
true table:

0 1

a 0 0

b 0 1

c 1 0

d 1 1

The set Dτ consists of 256 functionals. The grammar for generating all
Church’s numerals is the following: (see theorem 3.2).

(i) y → λux.x

(ii) y → λux.u(yux)

The λ system {a0, α} associated with the grammar consists of one lambda
definable object a0, which is an interpretation of the term λux.x, and one
unary function α which is an interpretation of the production y → λux.u(yux).

Object a0 is given by the true-table.

a0 = {a → b, b → b, c → b, d → b}
It can be found easily that the value of α on the object a0 is another object
a1 given by:

a1 = {a → a, b → b, c → c, d → d}
The value of α on a1 is a new object, let us say a2 given by:

a2 = {a → a, b → b, c → b, d → d}
Since the value α(a2) = a1 we have found all lambda definable functionals
{a0, a1, a2} among all 256 elements of Dτ . In fact the object a1 is an interpre-
tation of all odd Church’s numerals and a2 is an interpretation of all positive
even Church’s numerals. The object a0 is the interpretation of Church’s zero.

Theorem 4.7 As a trivial side effect of the result described in theorems 4.1
and 4.5 we may observe that there is no finite grammar generating all closed
terms for any of non regular rank 4 types.
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5 Probabilistic approach

In this section we will consider probability of the fact that randomly chosen 4
order type has decidable lambda definability problem. So we investigate the
size of the fraction of number of types of the given length n in which the λ
definability problem is decidable in full type hierarchy against the number of
all types of length n. We are specially interested in asymptotic behavior of
this fraction. Our interest lays in finding limit of that fraction when n →∞.
If the limit exists it represents the real number between 0 and 1 which we may
call the density of decidability. We prove that rank 4 types with decidable λ
definability problem are asymptotically empty meaning that the limit of that
fraction is 0.

First we have to establish the way the length of types are measured.

Definition 5.1 By ‖τ‖ we mean the length of type τ which we define as the
total number of occurrences of atomic type O in the given type. Parenthesis
which are sometimes necessary and arrow sign itself are not included in the
length of type. Formally, ‖ai‖ = 1 and ‖φ → ψ‖ = ‖φ‖+ ‖ψ‖ .
Definition 5.2 We associate the density µ(A) with a subset A ⊂ T of types
as:

µ(A) = lim
n→∞

#{τ ∈ A : ‖τ‖ = n}
#{τ ∈ T : ‖τ‖ = n}

(1)

if the limit exists.

The number µ(A) if exists is an asymptotic probability of finding type from
the class A among all types or it can be interpreted as the asymptotic density
of the set A in the set of types. It can be seen immediately that the density
µ is finitely additive so if A and B are disjoint classes of formulas such that
µ(A) and µ(B) exist then µ(A∪B) also exists and µ(A∪B) = µ(A)+µ(B). It
is straightforward to observe that for any finite set A the density µ(A) exists
and is 0. Dually for co-finite sets A the density µ(A) = 1. Nevertheless the
density µ is not countably additive.

5.1 Elementary Counting of Types

In this section we present some properties of numbers characterizing the
amount of types of different ranks. We may observe that many results and
methods could be rephrased purely in terms of binary trees with given prop-
erties. Obviously any type of size n can be seen as a binary tree with n leaves.
More advanced type counting can be found Moczurad, Tyszkiewicz, Zaionc
[4]. See also Kostrzycka and Zaionc [2] and [11].

Definition 5.3 By F n
k and Gn

k we mean respectively the total number of types
of rank k and size n and the total number of types of rank ≤ k and size n so:

F n
k = # {φ ∈ T : ‖φ‖ = n} ,(2)

Gn
k = # {φ ∈ T : ‖φ‖ ≤ n} .(3)
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Lemma 5.4 F n
k and Gn

k are given by the following mutual recursion:

F n
1 = if n = 1 then 1 else 0(4)

Gn
1 = if n = 1 then 1 else 0(5)

F n
k+1 =

n∑
i=0

F i
kG

n−i
k +

n∑
i=0

Gi
kF

n−i
k+1(6)

Gn
k+1 =Gn

k + F n
k+1(7)

Proof. The equality 4 and 5 are obvious since the type O is the only one of
size 1. Recursive equation 7 is obtained directly from the definition of rank in
section 1. The type τ → µ has rank k + 1 either when τ is exactly of rank k
and rank of µ is ≤ k or when rank of τ is ≤ k and rank of µ is exactly k + 1.
This leads to the recursive equation 6. 2

5.2 Generating functions

We are going to use the generating function technique for proving the asymp-
totic behavior of appropriate fractions. For the purpose of counting for every
k ≥ 1 we define the pair of generating functions fk(z) =

∑∞
i=0 F

i
kz

i and
gk(z) =

∑∞
i=0G

i
kz

i.

Lemma 5.5 Functions fk and gk satisfy the following recursive definitions:

fk+1(x) =
fk(x)gk(x)

1− gk(x)
(8)

gk+1(x) = gk(x) + fk+1(x)(9)

Proof. By simple encoding of 4, 5, 6 and 7 we get equations

f1(x) =x(10)

g1(x) =x(11)

fk+1(x) = fk(x)gk(x) + gk(x)fk+1(x)(12)

gk+1(x) = gk(x) + fk+1(x)(13)

Solving it proves the lemma 2

Theorem 5.6 Let R ⊂ T be a set of all regular types of rank 4. Let Rn be
the number of elements of R of size n. The generating function fR for the
sequence Rn is

fR(x) =
x3

(1− 2x)(1− x− x2)

Proof. We start with counting regular types of rank not greater then 3. Let
Ln stands for the number of such types of size n. Obviously we get L0 =
0, L1 = 1 and moreover Ln = Ln−1 + Ln−2 since any regular type of rank not
greater then 3 must be of either of the form O → τ or (O → O) → τ for some
shorter regular type τ . As we can see Ln forms the sequence of Fibonacci
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numbers. Therefore the generating function fL for the sequence Ln is

fL(x) =
1

1− x− x2
.

By generic regular fourth order types we mean any type of the form ((Ok →
O) → O) → τ for some regular type τ of rank not greater then 3 and for some
k ≥ 1. Let Gn stands for the number of such types of size n. Since for every
k ≥ 1 there is exactly one type of the form ((Ok → O) → O) the generating
function fG for the sequence Gn must be

fG(x) =
x3

1− x
· fL(x) =

x3

(1− x)(1− x− x2)
.

Finally we observe, that any regular fourth order type type is either generic
regular forth order type or can be obtain from other shorter regular type τ
of rank 4 by the construction O → τ or (O → O) → τ or ((Ok → O) →
O) → τ . Let Rn stands for the number of all regular forth order types of
size n. Therefore Rn has to satisfy the following recursive equation Rn =
Gn +

∑i=n−1
i=1 Ri. This can be translated in to equation for the generating

function fR namely fR(x) = fG(x) + xfR(x)
1−x . 2

Theorem 5.7 The density of rank 4 types with decidable λ definability prob-
lem among all rank 4 types is 0.

Proof. It is enough to find the closed form for generating functions involved.
Namely for all rank 4 types the function calculated from equality 8 is

f4(x) =
x4

1− 5x+ 7x2 − 2x3

Which can be easily turned into power serious O
((

3+
√

5
2

)n)
. The closed form

term for the function fR(x) enumerating regular 4 order types returns rate of

Fibonacci numbers namely O
((

1+
√

5
2

)n)
. 2

It doesn’t help much to add all third order types for which we know the lambda
definability problem is decidable. Undecidability have again a dominating
factor.

Theorem 5.8 The density of types of rank ≤ 4 with the decidable λ defin-
ability problem among all types of rank ≤ 4 is again 0.

Proof. It is enough to find the closed form for generation functions involved.
For all rank ≤ 4 types the function is

g4(x) =
x− 2x2

1− 3x+ x2

The respective power serious is again O
((

3+
√

5
2

)n)
. Function g3 obtained

from equality 9 is x3

(1−2x)(1−x) . The closed form term for the function fR(x) +

g3(x) enumerating regular 4 order types plus all third order types returns rate
of O (2n). 2
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